量子力学算符有这么一个表达式 e A + B = e A e B e − 1 2 [ A , B ] e^{A+B}=e^Ae^Be^{-\frac{1}{2}[A,B]} eA+B=eAeBe−21[A,B],实际上这只是一个近似表达式,它只在特殊情况下才是恒等式!这个特殊情况叫作disentangling theorem,当 [ A ^ , B ^ ] ≠ 0 [\hat{A}, \hat{B}]\neq0 [A^,B^]̸=0且 [ A ^ , [ A ^ , B ^ ] ] = [ B ^ , [ A ^ , B ^ ] ] = 0 [\hat{A},[\hat{A},\hat{B}]]=[\hat{B},[\hat{A},\hat{B}]]=0 [A^,[A^,B^]]=[B^,[A^,B^]]=0才成立!更一般的情况在下面讨论:
Baker–Campbell–Hausdorff (BCH) formula:
Z
=
log
(
e
X
e
Y
)
=
X
+
Y
+
∑
m
=
2
∞
Z
m
(
X
,
Y
)
.
Z = \log(e^Xe^Y) = X + Y +\sum_{m=2}^\infty Z_m(X, Y).
Z=log(eXeY)=X+Y+m=2∑∞Zm(X,Y).其中
Z
m
(
X
,
Y
)
Z_m(X, Y)
Zm(X,Y)是一个非对易算符
X
,
Y
X,Y
X,Y构成的homogeneous Lie polynomial。前几项表达式为
Z
2
=
1
2
[
X
,
Y
]
,
Z
3
=
1
12
[
X
,
[
X
,
Y
]
]
−
1
12
[
Y
,
[
X
,
Y
]
]
,
Z
4
=
1
24
[
X
,
[
Y
,
[
Y
,
X
]
]
]
.
Z_2 =\frac{1}{2}[X, Y ],\ Z_3=\frac{1}{12}[X, [X, Y ]] −\frac{1}{12}[Y, [X, Y ]],\ Z_4=\frac{1}{24}[X, [Y,[Y, X]]].
Z2=21[X,Y], Z3=121[X,[X,Y]]−121[Y,[X,Y]], Z4=241[X,[Y,[Y,X]]].或者写到更高阶:

The Zassenhaus formula:
Zassenhaus在一篇未发表的文章里推导了一个公式,它可以看成是BCH formula的对偶公式:
e
t
(
X
+
Y
)
=
e
t
X
e
t
Y
e
−
t
2
2
[
X
,
Y
]
e
t
3
6
(
2
[
Y
,
[
X
,
Y
]
]
+
[
X
,
[
X
,
Y
]
]
)
e
−
t
4
24
(
[
[
[
X
,
Y
]
,
X
]
,
X
]
+
3
[
[
[
X
,
Y
]
,
X
]
,
Y
]
+
3
[
[
[
X
,
Y
]
,
Y
]
,
Y
]
)
⋯
e^{t(X+Y)}=e^{tX}~e^{tY}~e^{-{\frac {t^{2}}{2}}[X,Y]}~e^{{\frac {t^{3}}{6}}(2[Y,[X,Y]]+[X,[X,Y]])}~e^{{\frac {-t^{4}}{24}}([[[X,Y],X],X]+3[[[X,Y],X],Y]+3[[[X,Y],Y],Y])}\cdots
et(X+Y)=etX etY e−2t2[X,Y] e6t3(2[Y,[X,Y]]+[X,[X,Y]]) e24−t4([[[X,Y],X],X]+3[[[X,Y],X],Y]+3[[[X,Y],Y],Y])⋯这个公式的意义是,将两个不对易算符求和的指数改写成无穷多项算符指数形式的乘积,这种改写形式广泛应用于统计力学,多体理论,量子光学,路径积分等。文献[2]给出了计算高阶项的递归方法。
特别的,如果[X,Y]是李群的central,也就是它和任意群元都对易,在这里是和 X , Y X,Y X,Y对易,则我们有 e X e Y = e X + Y + 1 2 [ X , Y ] . e^X e^Y= e^{X+Y +\frac{1}{2}[X,Y]}. eXeY=eX+Y+21[X,Y].
量子力学应用示例
在量子光学中,optical phase space里一个mode的Displacement operator定义为: D ^ ( α ) = e v a ^ † − v ∗ a ^ = e v a ^ † e − v ∗ a ^ e − ∣ v ∣ 2 / 2 , \hat{D}(\alpha)=e^{v\hat{a}^\dagger - v^*\hat{a}} = e^{v\hat{a}^\dagger} e^{-v^*\hat{a}} e^{-|v|^{2}/2}, D^(α)=eva^†−v∗a^=eva^†e−v∗a^e−∣v∣2/2,其中 a ^ \hat{a} a^和 a ^ † \hat{a}^{\dagger} a^†是湮灭和产生算符,且满足 [ a ^ , a ^ † ] = I [\hat{a},\hat{a}^{\dagger}]=I [a^,a^†]=I(是这个群的central), v v v是optical phase space位移大小的度量。最后一个等式不是近似而是精确的,用到了Zassenhaus formula的特殊情况。
The name of the displacement operator is derived from its ability to displace a localized state in phase space by a magnitude α \alpha α. It may also act on the vacuum state by displacing it into a coherent state. Specifically, D ^ ( α ) ∣ 0 ⟩ = ∣ α ⟩ \hat{D}(\alpha )|0\rangle =|\alpha \rangle D^(α)∣0⟩=∣α⟩ where ∣ α ⟩ |\alpha \rangle ∣α⟩ is a coherent state, which is an eigenstate of the annihilation (lowering) operator.
【Ref】
1.https://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
2.(arxiv) Efficient computation of the Zassenhaus formula https://arxiv.org/pdf/1204.0389.pdf
博客探讨了量子力学中的BCH(Baker-Campbell-Hausdorff)公式和Zassenhaus公式,指出e^(A+B)=e^Ae^Be^(-[A,B]/2)仅在特定条件下为恒等式。文章解释了这些公式的重要性,并提供了Zassenhaus公式的一个应用例子,即在量子光学中位移算符如何利用该公式精确表示。"
105047265,8327086,机器学习数学基础:直线与噪声点的分析,"['机器学习', '数学', '数据处理', 'numpy', '编程']
2078

被折叠的 条评论
为什么被折叠?



