18本TensorFlow英文书单及下载

本文列举了18本关于TensorFlow和深度学习的英文书籍,包括《Building Machine Learning Projects with TensorFlow》、《Deep Learning with TensorFlow》等,适合不同水平的学习者。每本书均有作者和出版年份,部分还附带源码。读者可通过提供的下载链接获取这些PDF资源,以提升在机器学习和人工智能领域的技能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Beginning Application Development with TensorFlow and Keras,Luis Capelo,2018
Building Machine Learning Projects with TensorFlow, Rodolfo Bonnin,2016
Deep Learning with TensorFlow,Giancarlo Zaccone & Md.Rezaul Karim & Ahmed Menshawy,2017
Deep Learning with TensorFlow,2nd,Giancarlo Zaccone & Md.Rezaul Karim,2018
Getting Started with TensorFlow,Giancarlo Zaccone,2016
Hands-On Deep Learning with TensorFlow,Dan Van Boxel,2017+源码
Hands-On Machine Learning with Scikit-Learn and TensorFlow,Aurélien Géron,OReilly,2017
Introduction to Deep Learning_complete-python-tensorflow-examples,Jurgen Brauer,2018
Learning TensorFlow_A Guide to Building Deep Learning Systems,Tom Hope & Yehezkel S.Resheff & Itay Lieder,OReilly,2017
Machine Learning with TensorFlow,Nishant Shukla,2018
Mastering Predictive Analytics with scikit-learn and TensorFlow,Alan Fontaine,2018+源码
Pro Deep Learning with TensorFlow,A Mathematical Approach to Advanced Artificial Intelligence in Python,Santanu Pattanayak,2017
TensorFlow Deep Learning Projec_10 real-world projects on computer vision, machine translation,chatbots, and reinforcement learning,Luca Massaron+,2018
TensorFlow for Deep Learning_From Linear Regression to Reinforcement Learning,Bharath Ramsundar & Reza Bosagh Zadeh,OReilly,2018
TensorFlow For Dummies,Matthew Scarpino,2018
TensorFlow Machine Learning Cookbook,Nick McClure,2017
TensorFlow Machine Learning Cookbook,2nd,Nick McClure,2018+源码
TensorFlow Powerful Predictive Analytics with TensorFlow,Md. Rezaul Karim,2018+源码

下载网址链接:https://www.fageka.com/store/item/s/id/flCju8y5710.html

全部文件格式均为PDF。
收集和整理图书很劳累,低价收取辛苦费,物有所值,希望为中西技术文化交流和祖国的技术进步贡献一己之力,希望理解和支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值