Dual Contrastive Prediction for Incomplete Multi-view Representation Learning个人学习

提出一种名为DCP的新方法,用于解决不完全多视图表示学习中的跨视图一致性学习和数据恢复问题。通过最大互信息和最小条件熵实现一致性和恢复性。

摘要

问题:我们提出了一个统一的框架(unified framework)来解决 不完全多视图表示学习(incomplete multi-view representation learning)中的以下两个挑战性问题:i)如何学习统一不同视图的一致表示(a consistent representation unifying different views),ii)如何恢复丢失的视图(recover the missing views)。
解决:为了应对这些挑战,我们提供了一个信息理论框架(information theoretical framework),将一致性学习(consistency learning)和数据恢复(data recovery)作为一个整体来处理。在理论框架下,我们提出了一个新的目标函数(objective function),它联合解决了上述两个问题,并实现了可证明的充分最小表示(achieves a provable sufficient and minimal representation)。
具体做法:具体来说,一致性学习是通过对比学习(contrastive learning)->最大化不同视图的互信息(mutual information)来实现的,而缺失的视图是通过对偶预测(dual prediction)->最小化条件熵(dual prediction)来恢复的。
结论意义:据我们所知,这是第一个从理论上统一表示学习的跨视图一致性学习和数据恢复的工作。大量实验结果表明,在六个数据集上,该方法在聚类、分类和人类行为识别方面明显优于20种竞争性多视图学习方法。可以从以下位置访问代码https://pengxi.me.

介绍

在实际应用中,数据通常以多个视图或模式表示,它们通常具有多种异构属性(heterogeneous properties)。为了缩小这种异质差距(het

### 基于类原型对比学习在多标签和细粒度教育视频分类中的应用 #### 类原型对比学习的核心概念 类原型对比学习是一种通过构建类别级别的代表性向量(即类原型),并利用这些原型之间的关系来进行特征学习的方法。这种方法能够有效捕捉类间差异以及类内一致性,从而提升模型的泛化能力[^1]。 具体而言,在多标签场景下,每个类别的原型可以通过该类别下的所有样本嵌入向量计算得到。通常采用均值池化的方式生成类原型 \( C_k \),其中 \( k \) 表示第 \( k \) 个类别: \[ C_k = \frac{1}{N_k} \sum_{i=1}^{N_k} f(x_i), \] 这里 \( N_k \) 是属于类别 \( k \) 的样本数量,\( f(x_i) \) 则是输入样本 \( x_i \) 经过编码器提取后的特征向量[^2]。 #### 对比损失函数的设计 为了实现更有效的特征表示学习,对比学习框架引入了一种特殊的损失函数——InfoNCE Loss (Information Noise Contrastive Estimation)。这种损失函数旨在最大化正样本对之间的相似性,同时最小化负样本对之间的相似性。对于给定查询样本 \( q \),其对应的正样本集合记作 \( P(q) \),而负样本集合则为 \( N(q) \),那么 InfoNCE Loss 可定义如下: \[ L_{contrastive}(q) = -\log \left( \frac{\exp(\text{sim}(q, p)/\tau)}{\sum_{n \in N(q)} \exp(\text{sim}(q,n)/\tau)+\sum_{p' \in P(q)} \exp(\text{sim}(q,p')/\tau)} \right). \] 这里的 \( \text{sim}() \) 函数通常是余弦相似度或者欧氏距离,参数 \( \tau \) 称为温度超参,控制分布的锐利程度。 #### 多标签与细粒度教育视频分类的应用挑战 当应用于多标签和细粒度教育视频分类时,主要面临以下几个方面的挑战: - **标签不平衡**:某些细粒度类别可能拥有远少于其他类别的标注数据,这会使得训练过程中难以形成可靠的类原型。 - **语义重叠**:不同类别之间可能存在较高的语义关联性,增加了区分难度。 - **时间依赖特性**:相比于静态图片,动态视频还包含了帧间的时间序列信息,这对建模提出了更高要求。 针对上述问题,可以考虑以下改进措施: 1. 引入自适应权重机制调整各类别的重要性; 2. 设计专门的模块捕获跨帧间的长期依赖关系,比如使用 LSTM 或 Transformer 结构; 3. 融合外部知识源辅助优化决策边界。 #### 实验验证与效果分析 实验表明,在多个公开基准数据集上,基于类原型对比学习的方法显著优于传统监督方法以及其他无监督预训练方案。特别是在低资源环境下,由于充分利用了有限样例内部的信息结构,性能优势更加明显。 ```python import torch.nn.functional as F def info_nce_loss(query_embeddings, positive_embeddings, negative_embeddings, temperature=0.5): """ Compute the contrastive loss using InfoNCE formulation. Args: query_embeddings (Tensor): Query embeddings of shape [batch_size, embedding_dim]. positive_embeddings (Tensor): Positive sample embeddings of same shape. negative_embeddings (Tensor): Negative samples with shape [num_negatives * batch_size, embedding_dim]. temperature (float): Temperature parameter controlling sharpness. Returns: Tensor: Scalar value representing computed loss. """ # Normalize all vectors to unit length queries_norm = F.normalize(query_embeddings, dim=-1) positives_norm = F.normalize(positive_embeddings, dim=-1) negatives_norm = F.normalize(negative_embeddings, dim=-1) logits_pos = torch.sum(queries_norm * positives_norm, dim=-1).unsqueeze(-1) / temperature logits_neg = torch.matmul(queries_norm.unsqueeze(1), negatives_norm.T.permute(0, 2, 1)) / temperature full_logits = torch.cat([logits_pos, logits_neg], dim=-1) labels = torch.zeros(full_logits.shape[:2]).to(logits_pos.device).long() return F.cross_entropy(full_logits.view(-1, full_logits.size(-1)), labels.view(-1)) ```
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值