1 模板的特化
1.1 概念
通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理。
即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。模板特化中分为函数模板特化与类模板特化
1.2 函数模板特化
函数模板的特化步骤:
- 必须要先有一个基础的函数模板
- 关键字template后面接一对空的尖括号<>
- 函数名后跟一对尖括号,尖括号中指定需要特化的类型
- 函数形参表: 必须要和模板函数的基础参数类型完全相同,如果不同编译器可能会报一些奇怪的错误。
1.3 类模板特化
1.3.1 全特化
全特化即是将模板参数列表中所有的参数都确定化。
template<class T1, class T2>
class Data
{
public:
Data() { cout << "Data<T1, T2>" << endl; }
private:
T1 _d1;
T2 _d2;
};
template<>
class Data<int, char>
{
public:
Data() { cout << "Data<int, char>" << endl; }
private:
int _d1;
char _d2;
};
int main()
{
Data<int, int> d1; // Data<T1, T2>
Data<int, char> d2; // Data<int, char>
return 0;
}
1.3.2 偏特化
偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。比如对于以下模板类:
// 偏特化
template<class T1>
class Data<T1, double>
{
public:
Data() { cout << "Data<T1, double>" << endl; }
};
// 偏特化的一种
template<class T1, class T2>
class Data<T1*, T2*>
{
public:
Data() { cout << "Data<T1*, T2*>" << endl; }
private:
T1 _d1;
T2 _d2;
};
//两个参数偏特化为引用类型
template <typename T1, typename T2>
class Data <T1&, T2&>
{
public:
Data()
{
cout << "Data<T1&, T2&>" << endl;
}
private:
};
int main()
{
Data<int, int> d1; // Data<T1, T2>
Data<int, double> d2; // Data<int, double>
Data<double, double> d3; // Data<T1, double>
Data<int*, double*> d4; // Data<T1*, T2*>
Data<double&, int&> d5; // Data<T1&, T2&>
return 0;
}
1.4 模板分离编译
1.4.1 什么是分离编译
一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。
1.4.2 模板的分离编译
假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:
// a.h
template<class T>
T Add(const T& left, const T& right);
// a.cpp
template<class T>
T Add(const T& left, const T& right)
{
return left + right;
}
// main.cpp
#include"a.h"
int main()
{
Add(1, 2);
Add(1.0, 2.0);
return 0;
}
上面代码会报错,原因不理解,反正会报错
1.4.3 解决方法
- 将声明和定义放到一个文件 “xxx.hpp” 里面或者xxx.h其实也是可以的。(说白了,不分离)。
- 模板定义的位置显式实例化。这种方法不实用,不推荐使用。
1.5 模板总结
【优点】
- 模板复用了代码,节省资源,更快的迭代开发,C++的标准模板库(STL)因此而产生
- 增强了代码的灵活性
【缺陷】
- 模板会导致代码膨胀问题,也会导致编译时间变长
- 出现模板编译错误时,错误信息非常凌乱,不易定位错误