ibatis的批量处理

本文介绍了一个使用SqlMapClient进行批量插入、更新和删除操作的方法。通过一个具体的Java实现案例,展示了如何根据不同的操作类型(插入、更新或删除)来执行相应的数据库操作。
public int handleBatch(final BatchInfo batchInfo) throws DAOException {

try {


this.getSqlMapClientTemplate().execute(new SqlMapClientCallback() {
public Object doInSqlMapClient(SqlMapExecutor executor)
throws SQLException {

executor.startBatch();

for (BatchItem bi : batchInfo.getBatchItemList()) {

switch (batchInfo.getType()) {
case 1:
executor.insert(bi.getStatement(), bi.getObj());
break;

case 2:
executor.update(bi.getStatement(), bi.getObj());
break;

default:
executor.delete(bi.getStatement(), bi.getObj());
break;

}

}

executor.executeBatch();
return null;
}
});
return 0;
} catch (Throwable t) {
throw exceptionHandler.handleException(t);
}
}

多源动态最优潮流的分布鲁棒优化方法(IEEE118节点)(Matlab代码实现)内容概要:本文介绍了基于Matlab代码实现的多源动态最优潮流的分布鲁棒优化方法,适用于IEEE118节点电力系统。该方法结合两阶段鲁棒模型与确定性模型,旨在应对电力系统中多源不确定性(如可再生能源出力波动、负荷变化等),提升系统运行的安全性与经济性。文档还列举了大量相关的电力系统优化研究案例,涵盖微电网调度、电动汽车集群并网、需求响应、配电网重构等多个方向,并提供了YALMIP等工具包的网盘下载链接,支持科研复现与进一步开发。整体内容聚焦于电力系统建模、优化算法应用及鲁棒性分析。; 适合人群:具备电力系统基础知识和Matlab编程能力的研究生、科研人员及从事能源系统优化的工程技术人员;熟悉优化建模(如鲁棒优化、分布鲁棒优化)者更佳。; 使用场景及目标:①开展电力系统动态最优潮流研究,特别是含高比例可再生能源的场景;②学习和复现分布鲁棒优化在IEEE118等标准测试系统上的应用;③进行科研项目开发、论文复现或算法比较实验;④获取相关Matlab代码资源与仿真工具支持。; 阅读建议:建议按文档结构逐步浏览,重点关注模型构建思路与代码实现逻辑,结合提供的网盘资源下载必要工具包(如YALMIP),并在Matlab环境中调试运行示例代码,以加深对分布鲁棒优化方法的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值