单一职责模式
在软件组件设计中,如果责任划分的不清晰,使用继承得到的结果往往是随需求的变化,子类极具膨胀,同时充斥着重复代码,这时候关键是划清责任
- 装饰模式
- 桥模式
动机
在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入静态特性,使得这种扩展方式缺乏灵活性,并且伴随着子类的增多(扩展功能的增多),各种子类组合(扩展功能组合)会导致更多子类的膨胀
问题代码
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};
class CryptoNetworkStream : :public NetworkStream{
public:
virtual char Read(int number){
//额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
};
class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){
//额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};
class BufferedFileStream : public FileStream{
//...
};
class BufferedNetworkStream : public NetworkStream{
//...
};
class BufferedMemoryStream : public MemoryStream{
//...
}
class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
};
其中我们可以看见,我们每次去扩展一个新功能,而需要去继承一个新的类,同时我们也发现代码在各个类中出现了大量的代码重复,所以我们需要使用一些新的手法去改变这个情况,我们看一下下面的关系图
在考虑到组合后,我们可以发现他的规模达到了(1+N+M!/2),这就极大的导致了类的规模,使用大量的资源
模板定义
动态(组合)的给一个对象增加一些额外的职责,就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码&减少子类格式)
下面我们对他进行优化,将继承变为类的成员
//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;
virtual ~Stream(){}
};
//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}
};
class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}
};
class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}
};
//扩展操作
DecoratorStream: public Stream{
protected:
Stream* stream;//...
DecoratorStream(Stream * stm):stream(stm){
}
};
class CryptoStream: public DecoratorStream {
//第一种写法,但是很多时候我们的额外操作都有stream这个字段,还是有一些浪费
//所以我们可以将他提到前面,变成公共拥有的,这样可以节约内存
// Stream* stream;// new CryptoStream ---new NetworkStream
// 父类的指针可以接受子类的指针
public:
CryptoStream(Stream* stm):stream(stm){
}
virtual char Read(int number){
//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};
class BufferedStream : public DecoratorStream {
Stream* stream;//...
public:
BufferedStream(Stream* stm):stream(stm){
}
//...
};
void Process(){
//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);
BufferedStream* s3=new BufferedStream(s1);
BufferedStream* s4=new BufferedStream(s2);
}
我们来看重构以后的关系
我们可以看到我们需要类的规模为1+N+1+M的规模,我们就能发现小了很多
要点总结
- 通过采用组合而非继承的手法, Decorator模式实现了在运行时动态扩展(在运行的时候才起作用)对象功能的能力,而且可以根据需要扩展多个功能。避免了使用继承带来的“灵活性差”和“多子类衍生问题”。
- Decorator类在接口上表现为is-a Component的继承关系,即Decorator类继承了Component类所具有的接口。但在实现上又表现为has-a Component的组合关系,即Decorator类又使用了另外一个Component类。(包含又组合!!!)
- Decorator模式的目的并非解决“多子类衍生的多继承”问题,Decorator模式应用的要点在于解决“主体类在多个方向上的扩展功能”——是为“装饰”的含义。