Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7]
might become [4,5,6,7,0,1,2]
).
Find the minimum element.
You may assume no duplicate exists in the array.
Example 1:
Input: [3,4,5,1,2] Output: 1
Example 2:
Input: [4,5,6,7,0,1,2] Output: 0
从左向右扫描,扫描到的第一个逆序的位置,肯定是原始数组中第一个元素,时间 复 杂 度 O(n) 。
不过本题依旧可以用二分查找,最关键的是要判断那个“断层”是在左边还是右边。
若 A[mid] < A[right] ,则区间 [mid,right] 一定递增,断层一定在左边若 A[mid] > A[right] ,则区间 [left,mid] 一定递增,断层一定在右边
nums[mid] == nums[right] ,这种情况不可能发生,因为数组是严格单调递增的,不存在重复元素
不过本题依旧可以用二分查找,最关键的是要判断那个“断层”是在左边还是右边。
若 A[mid] < A[right] ,则区间 [mid,right] 一定递增,断层一定在左边若 A[mid] > A[right] ,则区间 [left,mid] 一定递增,断层一定在右边
nums[mid] == nums[right] ,这种情况不可能发生,因为数组是严格单调递增的,不存在重复元素
public class Solution {
public static int findMin(int[] nums) {
int right = nums.length - 1;
for (int i = 0; i < right; i++) {
if (nums[i] < nums[i + 1])
continue;
else return nums[i + 1];
}
return nums[0];
}
class Solution {
public int findMin(int[] nums) {
int first = 0;
int last = nums.length - 1;
while (first < last) {
int middle = first + (last - first) / 2;
if (nums[middle] > nums[last]) {
first = middle + 1;
} else {
last = middle;
}
}
return nums[first];
}
}