Given an array with n objects colored red, white or blue, sort them in-place so that objects of the same color are adjacent, with the colors in the order red, white and blue.
Here, we will use the integers 0, 1, and 2 to represent the color red, white, and blue respectively.
Note: You are not suppose to use the library's sort function for this problem.
Example:
Input: [2,0,2,1,1,0] Output: [0,0,1,1,2,2]
Follow up:
- A rather straight forward solution is a two-pass algorithm using counting sort.
First, iterate the array counting number of 0's, 1's, and 2's, then overwrite array with total number of 0's, then 1's and followed by 2's. - Could you come up with a one-pass algorithm using only constant space?
由于0, 1, 2 非常紧凑,首先想到计数排序(counting sort),但需要扫描两遍,不符合题目要求。
由于只有三种颜色,可以设置两个index,一个是red的index,一个是blue的index,两边往中间走。时间复杂度 O(n) ,空间复杂度 O(1) 。
第3种思路,利用快速排序里 partition 的思想,第一次将数组按0分割,第二次按1 分割,排序完毕,可以推广到 n 种颜色,每种颜色有重复元素的情况。
class Solution {
public void sortColors(int[] nums) {
int red = 0, blue = nums.length - 1;
for (int i = 0; i < blue + 1;) {
if (nums[i] == 0) {
swap(nums, i++, red++);
} else if (nums[i] == 2) {
swap(nums, i, blue--);
} else {
i++;
}
}
}
private void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}
/**
*
* @author dongb
* Sort Colors
* Rebuild partition()
* TC O(n). SC O(1)
*
*/
public class Solution {
public void sortColors(int[] nums) {
partition(nums, partition(nums, 0, nums.length, new EqualTo(0)), nums.length,
new EqualTo(1));
}
private static int partition(int[] nums, int begin, int end, EqualTo predicate) {
int pos = begin;
for (; begin != end; begin++) {
if (predicate.apply(nums[begin]))
swap(nums, begin, pos++);
}
return pos;
}
static class EqualTo {
private final int target;
public EqualTo(int target) {
this.target = target;
}
public boolean apply(int x) {
return x == target;
}
}
private static void swap(int[] nums, int i, int j) {
if (i == j) return;
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
}