hdu 1162 Eddy's picture

Eddy热爱绘画,但朋友对其作品反应冷淡。为改变这一现状,Eddy设计了一个数学问题:给定平面上的多个点,如何用最短的墨水线将所有点连接起来?本文通过实现Prim算法解决该问题,展示了如何找到连接所有点的最小生成树。

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=1162 

Eddy's picture

Description

Eddy begins to like painting pictures recently ,he is sure of himself to become a painter.Every day Eddy draws pictures in his small room, and he usually puts out his newest pictures to let his friends appreciate. but the result it can be imagined, the friends are not interested in his picture.Eddy feels very puzzled,in order to change all friends 's view to his technical of painting pictures ,so Eddy creates a problem for the his friends of you.
Problem descriptions as follows: Given you some coordinates pionts on a drawing paper, every point links with the ink with the straight line, causes all points finally to link in the same place. How many distants does your duty discover the shortest length which the ink draws?

Input

The first line contains 0 < n <= 100, the number of point. For each point, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the point. 

Input contains multiple test cases. Process to the end of file.

Output

Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the points. 

Sample Input

3
1.0 1.0
2.0 2.0
2.0 4.0

Sample Output

3.41

最小生成树。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
using std::map;
using std::min;
using std::find;
using std::sqrt;
using std::vector;
using std::multimap;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 110;
const int INF = 0x3f3f3f3f;
struct P {
    double x, y;
    P(double i = 0.0, double j = 0.0) :x(i), y(j) {}
    double calc(const P &t) const {
        return sqrt((x - t.x) * (x - t.x) + (y - t.y) * (y - t.y));
    }
}A[N];
struct edge { int to; double w; int next; }G[(N * N) << 1];
struct PII {
    int v;
    double w;
    PII(int i = 0, double j = 0.0) :v(i), w(j) {}
    inline bool operator<(const PII &x) const {
        return w > x.w;
    }
};
struct Prim {
    bool vis[N];
    int tot, head[N];
    double mincost[N];
    inline void init() {
        tot = 0, cls(head, -1), cls(vis, false), cls(mincost, 0x3f);
    }
    inline void add_edge(int u, int v, double w) {
        G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
    }
    inline void built(int m) {
        rep(i, m) {
            scanf("%lf %lf", &A[i].x, &A[i].y);
        }
        for(int i = 0; i < m; i++) {
            for(int j = 0; j < m; j++) {
                if(i == j) continue;
                add_edge(i + 1, j + 1, A[i].calc(A[j]));
            }
        }
    }
    inline void prim(int s) {
        double ans = 0.0;
        priority_queue<PII> q;
        q.push(PII(s, 0.0));
        for(int i = head[s]; ~i; i = G[i].next) {
            mincost[G[i].to] = G[i].w;
            q.push(PII(G[i].to, G[i].w));
        }
        mincost[s] = 0, vis[s] = true;
        while(!q.empty()) {
            PII t = q.top(); q.pop();
            int u = t.v;
            if(vis[u]) continue;
            vis[u] = true;
            ans += t.w;
            for(int i = head[u]; ~i; i = G[i].next) {
                double &d = mincost[G[i].to];
                if(d > G[i].w && !vis[G[i].to]) {
                    d = G[i].w;
                    q.push(PII(G[i].to, d));
                }
            }
        }
        printf("%.2lf\n", ans);
    }
    inline void solve(int n) {
        init(), built(n), prim(1);
    }
}go;
int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w+", stdout);
#endif
    int n;
    while(~scanf("%d", &n)) {
        go.solve(n);
    }
    return 0;
}

转载于:https://www.cnblogs.com/GadyPu/p/4792713.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值