1002写出这个数(20)

本篇博客介绍了一种方法,用于读取一个大整数(小于10^100),计算该整数各位数字之和,并将得到的和用汉语拼音的形式输出。代码实现了从输入获取数字、计算总和以及转换成对应拼音的功能。

读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字。

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。这里保证n小于10100

输出格式:在一行内输出n的各位数字之和的每一位,拼音数字间有1 空格,但一行中最后一个拼音数字后没有空格。

输入样例:
1234567890987654321123456789
输出样例:
yi san wu
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int main(void)
{
    char ch;
    char s[5];
    char k[11][5]={"ling","yi","er","san","si","wu","liu","qi","ba","jiu"};
    int sum=0;
    while((ch=getchar())!='\n')
        sum=sum+(ch-'0');       //注意此处的字符串转化为数字的处理方法!
    sprintf(s,"%d",sum);        //sprintf(char buffer,const char*formart,[argument])
    for(int i=0;s[i]!=0;i++)
    {
        if(i>0)
            printf(" ");
        printf("%s",k[s[i]-'0']);//与0的差是几,就输出那个数字的字符串!
    }

    return 0;
}


本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值