反爬虫策略

本文介绍了五种反爬虫策略:设置下载延迟减少服务器负载,禁止cookies避免暴露爬虫轨迹,使用user agent池混淆爬虫身份,利用代理IP应对IP封锁,以及采用Scrapy+Redis+MySQL实现分布式爬虫,提升抓取效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

策略一:设置download_delay

  • 作用:设置下载的等待时间,大规模集中的访问对服务器的影响最大,相当与短时间中增大服务器负载。
  • 缺点:下载等待时间长,不能满足段时间大规模抓取的要求,太短则大大增加了被ban的几率。

策略二:禁止cookies

  • Cookie,有时也用其复数形式 Cookies,指某些网站为了辨别用户身份、进行 session跟踪而储存在用户本地终端上的数据(通常经过加密)。
  • 作用:禁止cookies也就防止了可能使用cookies识别爬虫轨迹的网站得逞。
  • 实现:COOKIES_ENABLES=False

策略三:使用user agent池(拓展: 用户代理中间件)

  • 为什么使用? scrapy本身是使用Scrapy/0.22.2来表明自己身份的。这也就暴露了自己是爬虫的信息。
  • user agent,是指包含浏览器信息、操作系统信息等的一个字符串,也称之为一种特殊的网络协议。服务器通过它判断当前访问对象是浏览器、邮件客户端还是网络爬虫。

通常在下载器中间件中进行处理。比如在setting.py中建立一个包含很多浏览器User-Agent的列表,然后新建一个random_user_agent文件:

class RandomUserAgentMiddleware(object):
    @classmethod
    def process_request(cls, request, spider):
        ua = random.choice(spider.settings['USER_AGENT_LIST'])
        if ua:
            request.headers.setdefault('User-Agent', ua)

这样就可以在每次请求中,随机选取一个真实浏览器的User-Agent。

策略四:使用代理IP中间件

web server应对爬虫的策略之一就是直接将你的IP或者是整个IP段都封掉禁止访问,这时候,当IP封掉后,转换到其他的IP继续访问即可。

策略五: 分布式爬虫Scrapy+Redis+MySQL(多进程)

  • Scrapy-Redis则是一个基于Redis的Scrapy分布式组件。
  • 它利用Redis对用于爬取的请求(Requests)进行存储和调度(Schedule),并对爬取产生rapy一些比较关键的代码,将scrapy变成一个可以在多个主机上同时运行的分布式爬虫。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值