自举电路工作原理分析

OTL功率放大器中要设自举电路,图18-9所示是自举电路。电路中的C1,

R1和R2构成自举电路。C1为自举电容,R1O 隔离电阻,R2将自举电压加到

VT2基极。

    

向左转 | 向右转

 

 

VT1集电极信号为正半周期间VT2导通、放大,当输入VT2基极的信号比较大

时,VT2基极信号电压大,由于VT2发射极电压跟随基极电压,VT2发射极

压接近直流工作电压+V,造成VT2集电极发射极之间的直流工作电压减小,


VT2容易进入饱和区,使三极管基极电流不能有效地控制集电极电流。


    换句话讲,三极管集电极与发射极之间直流工作电压减小后,基

极电流增大许多才能使三极管集电极电流有一些增大,显然使正半周


大信号输出受到抑制,造成正半周大信号的输出不足,必须采取自举

电路来加以补偿。


    自举电路实质是在放大器的局部引入正反馈


    (2)自举电路静态分析。静态时,直流工作电压+V经Rl对Cl充电,使

Cl上充有上正下负的电压UC1,这样电路中B点的直流电压等于A点的直

流电压加上UC1,B点的直流电压高于A点电压。


    (3)自举过程分析。加入自举电路后,由于Cl容量很大,它的放电

回路时间常数很大,使Cl上的电压Uci基本不变。正半周大信号出现时,

A患电压升高导致B点电压也随之升高。


    电路中,B点升高的电压经R2加到VT2基极,使VT2基极上的信号电

压更高(正反馈过程),有更大的基极信号电流激励VT2,使VT2发射极

输出信号电流更大,补偿VT2集电极与发射极之间直流工作电压下降而造

成的输出信号电流不足。


    (4)隔离电阻作用。自举电路中,Rl用来将B点的直流电压与直流工作

电压+V隔离,使B点直流电压有可能在某瞬间超过+ Vo当VT2中正半周信

号幅度很大时,A点电压接近+V,B点直流电压更大,并超过+V,此时B点电

流经Rl流向电源+V(对直流电源+V充电)。如果没有电阻Rl的隔离作用(分

析视Rl短接),则B点直流电压最高为+V,而不可能超过+V,此时无自举作

用。可见设置隔离电阻Rl后,大信号时的自举作用更好。

对于三相逆变电路的驱动, 对于三相逆变电路的驱动, 对于三相逆变电路的驱动, 对于三相逆变电路的驱动, 对于三相逆变电路的驱动, 对于三相逆变电路的驱动, 通常需要四路相互隔离的 通常需要四路相互隔离的 通常需要四路相互隔离的 通常需要四路相互隔离的 通常需要四路相互隔离的 通常需要四路相互隔离的 通常需要四路相互隔离的 控制 电源 (三路用于 P侧驱动,一 侧驱动,一 侧驱动,一 侧驱动,一 路用于 N侧驱动 侧驱动 )。通过 自举电路 自举电路 实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一实现浮动控制电源可以将隔离的数量从四路 减少到一(N侧控制电源 侧控制电源 侧控制电源 )。 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 自举电路由一个二极管,容和限流阻组成。如图 1-1所示,其使用 所示,其使用 所示,其使用 自举电容作为 自举电容作为 自举电容作为 自举电容作为 驱动 P侧 IGBTIGBTIGBTIGBT和 MOSFETMOSFETMOSFET MOSFET 的控制电源。 控制电源。 控制电源。 自举电容提供 自举电容提供 自举电容提供 P侧器件开通 侧器件开通 时栅极充电 栅极充电 栅极充电 所需电荷 所需电荷 ,并提供 ,并提供 ,并提供 P侧驱动 侧驱动 IC 中逻辑电 逻辑电 路消耗的 消耗的 电流。如图 电流。如图 电流。如图 1-2所示 ,由于 ,由于 采用 自举 电容代替 电容代替 隔离 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 电源,它的供能力是受到限制。 所以这个利用自举 所以这个利用自举 所以这个利用自举 所以这个利用自举 电路实现的 电路实现的 浮动电源 浮动电源 只适用于像 适用于像 适用于像 DIPIPMDIPIPMDIPIPMDIPIPMDIPIPMDIPIPM这样对电源流要求较小的器件 样对电源流要求较小的器件 样对电源流要求较小的器件 样对电源流要求较小的器件 样对电源流要求较小的器件 样对电源流要求较小的器件 样对电源流要求较小的器件 。 逆变过 程中当输出端 程中当输出端 程中当输出端 (U/V/W)(U/V/W)(U/V/W)(U/V/W)(U/V/W)(U/V/W) 电位会 电位会 拉低到 拉低到 GNDGNDGND附近 时,N侧 15V15V 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 的控制电源会通过限流阻和自举二极管 对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量对自举电容充。但由于开关序列, 量限流电阻等制 限流电阻等制 限流电阻等制 使自举电容 自举电容 自举电容 可能 不能完全充电。 不能完全充电。 不能完全充电。 不能完全充电。 充电 不完全 不完全 将 导致的自举电容欠压,进而使 导致的自举电容欠压,进而使 导致的自举电容欠压,进而使 导致的自举电容欠压,进而使 导致的自举电容欠压,进而使 导致的自举电容欠压,进而使 模块工作 模块工作 模块工作 进入欠压保护 进入欠压保护 进入欠压保护 进入欠压保护 状态。 状态。 由于驱动电压降低, 由于驱动电压降低, 由于驱动电压降低, 由于驱动电压降低, 由于驱动电压降低, P侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 侧器件的功率损耗将增加直至进 入欠压保护而停止开关。 入欠压保护而停止开关。 入欠压保护而停止开关。 入欠压保护而停止开关。 入欠压保护而停止开关。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。 所以在自举电路设计时应该做充分的考虑和评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值