JavaConcurrent包源码解析:ThreadPoolExecutor线程池

本文详细解析了Java中ThreadPoolExecutor的内部实现原理,包括成员变量、构造方法、execute方法及shutdown系列方法的源码分析。重点介绍了线程池的状态转换、任务分配策略以及线程池的启动与关闭流程。

本文概要

  1. 成员变量
  2. 构造方法
  3. 准备知识
  4. execute方法源码解析
  5. shutdown方法源码解析
  6. shutdownNow方法源码解析

首先我们来看下ThreadPoolExecutor类的成员变量

成员变量

public class ThreadPoolExecutor extends AbstractExecutorService {
   // ctl的值由线程池状态和线程池数量组成,后面会具体讲
	private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
	// 这个数字。主要用作下面的容量、线程池状态的移位计算
    private static final int COUNT_BITS = Integer.SIZE - 3;
    // 线程最大的数量【值等于:(1 << 29) - 1】
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    /*
     * 下面是线程池的状态
     * execute(Runnable) : RUNNING
     * shutdown():RUNNING -> SHUTDOWN -> TIDYING -> TERMINATED
     * shutdownNow():RUNNING -> STOP-> TIDYING -> TERMINATED
     */
    // RUNNING 值为【-1 << 29】
    private static final int RUNNING    = -1 << COUNT_BITS;
    // SHUTDOWN 值为【0 << 29】 
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    // STOP 值为【1 << 29】
    private static final int STOP       =  1 << COUNT_BITS;
    // TIDYING  值为【2<< 29】
    private static final int TIDYING    =  2 << COUNT_BITS;
    // TERMINATED 值为【3 << 29】
    private static final int TERMINATED =  3 << COUNT_BITS;

	// 存储Runnable任务的队列
    private final BlockingQueue<Runnable> workQueue;    	
    private final ReentrantLock mainLock = new ReentrantLock();
	// 存储Worker的容器
    private final HashSet<Worker> workers = new HashSet<Worker>();
    private final Condition termination = mainLock.newCondition();
	// 最大的线程数
    private int largestPoolSize;
	// 总共完成的任务数量
    private long completedTaskCount;    
    // 线程工厂,用于创建线程
    private volatile ThreadFactory threadFactory;	
	// 拒绝策略
    private volatile RejectedExecutionHandler handler;    
    // 线程存活时间
    private volatile long keepAliveTime;
	// 核心线程数
    private volatile int corePoolSize;
	// 最大线程数
    private volatile int maximumPoolSize;
	// 默认拒绝策略
    private static final RejectedExecutionHandler defaultHandler =
        new AbortPolicy();
}

构造方法

它具有4个构造方法

	public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }
    
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }       

它的构造方法非常简单,只是进行一些简单的成员变量赋值。

在看execute()执行Task源码之前,需要看看几个比较关键的方法。

准备知识

由上面的成员量我们知道,线程池它主要由RUNNING、SHUTDOWN、STOP、TIDYING、TERMINATED这5个状态。下面我们来看一下
在这里插入图片描述

由上面可知每个状态的值为:
RUNNING 	: 10100000 00000000 00000000 00000000SHUTDOWN 	: 00000000 00000000 00000000 00000000STOP                 :  00100000 00000000 00000000 00000000TIDYING            :  01000000 00000000 00000000 00000000TERMINATED  : 01100000 00000000 00000000 00000000

由上面的值可知道 :TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING,而且线程状态主要由int的前三个字节决定

线程数的最大数量为 private static final int CAPACITY = (1 << COUNT_BITS) - 1;

CAPACITY : 00011111 11111111 11111111 11111111

下面我们几个关键方法

1、ctlOf

 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
 private static int ctlOf(int rs, int wc) { 
 	return rs | wc; 
 }

这个方法是设置当前线程池的状态,很明显,ctl的初始值是 RUNNING | 0 = RUNNING【10100000 00000000 00000000 00000000】

2、workerCountOf

 private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
 private static int workerCountOf(int c)  { 
 	return c & CAPACITY; 
 }

这个方法是计算当前线程池的线程数,上面方法的c一般是ctl.get()的值
举个例子:ctl.get()的值是【10100000 00000000 00000000 10000011】,那么通过workerCountOf计算得出当前的线程数为:
在这里插入图片描述
最终的值为ctl.get()值的后29位也就是【00000000 00000000 00000000 10000011】。所以从这里我们可以得出一个结论,线程池的状态和线程池的线程数量由一个int的32字节组成,由下图
在这里插入图片描述

3、runStateOf

private static int runStateOf(int c)     { 
	return c & ~CAPACITY; 
}

这个方法是获取当前线程池的状态:这个c一般是ctl.get()的值
举个例子,当前ctl.get()的值是【10100000 00000000 00000000 10000011】
在这里插入图片描述
最终的值为【10100000 00000000 00000000 00000000】也就是RUNNING的值

4、runStateLessThan

  private static boolean runStateLessThan(int c, int s) {
        return c < s;
    }

判断c状态是否小于s状态。上面我们可以知道TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING
所以比如调用runStateLessThan(c,SHUTDOWN),那么这里只有c=RUNNING,才会返回true,其它都返回false

5、runStateAtLeast

    private static boolean runStateAtLeast(int c, int s) {
        return c >= s;
    }

判断c状态是否大于等于s状态,跟上面个方法差不多。

6、isRunning

    private static boolean isRunning(int c) {
        return c < SHUTDOWN;
    }

判断c状态是否为RUNNING状态

execute方法源码解析

有了上面的准备知识我们就可以看execute()方法的源码

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
         // 获取ctl的值
        int c = ctl.get();
        /*
         *  workerCountOf(c):计算当前线程数
         */
        if (workerCountOf(c) < corePoolSize) {
        	// 如果当前线程数 < corePoolSize,那么调用addWorker创建一个新的线程去执行Task
            if (addWorker(command, true))
                return;
            // 如果创建线程失败,那么获取ctl的值,因为可能线程池的状态变了
            c = ctl.get();           
        }
        // 判断当前线程池状态是否为RUNNING,并且往队列中放入一个Task
        if (isRunning(c) && workQueue.offer(command)) {
        	 // 重新获取当前线程池状态
            int recheck = ctl.get();
            // 如果当前线程池状态不是RUNNING,那么把Task从队列中移除
            if (! isRunning(recheck) && remove(command))
            	  // 执行拒绝策略
                reject(command);
            // 如果当前线程池状态是RUNNING,并且线程数为0
            else if (workerCountOf(recheck) == 0)
            		// 调用addWork创建一个线程去执行TASK
                addWorker(null, false);
        }
        // 如果当前线程池状态不是RUNNING或者往队列满了,那么调用addWorker创建一个线程执行Task
        else if (!addWorker(command, false))
        	 //  如果当前线程池状态不是RUNNING,并且队列已经满了,并且当前线程数 = maximumPoolSize,那么执行拒绝策略
            reject(command);
    }

由上面可知,我们可以做一个简单的总结,然后在依次分析:

  1. 判断线程数是否小于corePoolSize,如果小于,那么直接调用addWorker创建线程去执行Task
  2. 如果线程数大于或者等于corePoolSize,那么首先判断线程池是否为RUNNING,如果队列没满,把Task放到队列中
  3. 如果队列满了,那么调用addWorker方法,创建一个新的线程去执行Task,直到线程数等于maximumPoolSize为止
  4. 如果此时队列满了,而且线程数也等于maximumPoolSize,那么调用reject方法,执行拒绝策略

addWorker

    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        // 这里一个死循环
        for (;;) {
        	 // 获取ctl的值,前面说过这个值包含当前线程池的状态和线程池的数量
            int c = ctl.get();
            // 获取当前线程池的状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            /*
             * rs >= SHUTDOWN
             * rs == SHUTDOWN &&  firstTask == null &&  ! workQueue.isEmpty()
             * 这里什么时候才会返回false,三种情况
             * 	1、当前线程状态为STOP,也就是调用了shutdownNow()
             *   2、当前线程状态为SHUTDOWN,并且firstTask == null,但是队列为空
             *   3、当前线程为SHUTDOWN,并且firstTask != null。也就是用户调用了shutdown(),然后又调用
             *   exeute(Runnable),那么这种情况下,很明显这里也会返回false
             */
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
		     // 这里又一个死循环
            for (;;) {
            	  // 获取当前线程池的线程数
                int wc = workerCountOf(c);
                /*
                 * 如果线程数wc >= CAPACITY ,那么直接返回false
                 * 如果这里 core=true, 还需要判断wc >= corePoolSize
                 *         core = false,那么需要判断wc >= maximumPoolSize
                 */
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                /*
                 * 如果前面判断通过后,那么调用CAS让ctl的值+1
                 */
                if (compareAndIncrementWorkerCount(c))
                	  /*
                	   * 如果CAS成功,那么直接跳出最外层retry循环
                	   */
                    break retry;
                /*
                 * 如果CAS失败,那么重新获取ctl的值
                 */
                c = ctl.get();  // Re-read ctl
                /*
                 * 判断当前的状态是否被改变了,
                 * 	1、如果状态被改变了,那么进行跳出内层循环,进行retry循环
                 * 	2、如果当前状态没有被改变,那么进行内层循环
                 */
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
		 
		 /*
		  * 进入到这里,说明ctl已经成功调用CAS并且值+1
		  */
		  /*
		   * 定义2个标识
		   * workerStarted :Worker是否成功start
		   * workerAdded : Worker是否成功被添加到容器中
		   */
        boolean workerStarted = false;       
        boolean workerAdded = false;
        Worker w = null;
        try {
        	 /*
        	  * 创建了一个Worker,Worker里面封装了Thread,下面我们可以看下Worker的构造方法
        	  * Worker(Runnable firstTask) {
            *			setState(-1); // inhibit interrupts until runWorker
            *			this.firstTask = firstTask;
            *			this.thread = getThreadFactory().newThread(this);
       	  *	 }
        	  */
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {            	  	
                final ReentrantLock mainLock = this.mainLock;
                // 对线程池加锁
                mainLock.lock();                
                try {
                    // 重新获取线程池状态,因为可能刚刚创建Worker的时候,线程池状态就被改变了
                    int rs = runStateOf(ctl.get());					
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        /*
                         * 进入这里,说明线程池状态为RUNNING
                         */
                         // 往容器中添加新建的Worker
                        workers.add(w);
                        // 获取当前容器中的数量
                        int s = workers.size();
                        // 如果当前数量  > 最大Worker数量
                        if (s > largestPoolSize)
                        	// 把s 赋值给largestPoolSize
                            largestPoolSize = s;
                        // 把workerAdded标识为true
                        workerAdded = true;
                    }
                } finally {
                   // 解锁
                    mainLock.unlock();
                }
                if (workerAdded) {
                	  // 开启Worker里的Thread线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
            		/*
            		 * 如果开启线程失败,那么调用addWorkerFailed方法,把刚新建的Worker从容器中去除,
            		 * 并且把ctl - 1
            		 */
                addWorkerFailed(w);
        }
        return workerStarted;
    }

看到这里,可能就有几个疑问

  1. Worker是如何执行Task
  2. 如果Worker的数量大于maximumPoolSize的时候,那么是怎么回收Worker

那么我们紧接着去看下Worker的源码

    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

从上面我们可以知道当调用start()的时候,会执行Worker的run(),run实际上执行的是runWorker

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        /*
         * 这个标识主要是标识Worker是正常回收还是异常退出
         * true : 执行task出现异常,异常退出
         * false : 正常回收
         */
        boolean completedAbruptly = true;
        try {        	
        	 // 死循环,调用getTask(),不断从队列中获取Task,如果返回Task为null,那么就需要回收Worker
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                /*
                 * 这里主要判断 判断当前线程池状态是否>= STOP
                 */
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    // 调用Thread.interrupt()
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                    		// 取出的Task,直接调用run方法进行运行
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    // 成功运行的Task数量+1
                    w.completedTasks++;
                    w.unlock();
                }
            }
            // 标记completedAbruptly为false,标记是正常回收Worker
            completedAbruptly = false;
        } finally {
        	  // 执行Worker退出的一些操作
            processWorkerExit(w, completedAbruptly);
        }
    }

紧接着我们看下getTask()和processWorkerExit()

getTask()

这个方法主要是从队列中获取Task,如果这里返回null,那么意味着需要回收Worker

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            // 获取ctl的值
            int c = ctl.get();
            // 获取当前线程池的状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            /*
             * 判断当前线程池的状态 >= SHUTDOWN 而且 (队列为空  或者 线程池状态 >= STOP)             
             */
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            	  /*
            	   * 这里有两种情况会进来
             	   * 1、调用shutdown(),并且队列为空
                 * 2、调用shutdownNow()【这种情况不管队列是否空】
            	   */
            	  // ctl执行CAS -1
                decrementWorkerCount();
                // 返回null
                return null;
            }
			 // 获取线程池的线程数量
            int wc = workerCountOf(c);

            // Are workers subject to culling?
            // 默认allowCoreThreadTimeOut为false,所以这里wc > corePoolSize的话,timed=true
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                /*
                 * 这里有3种情况会进来
                 * 1、allowCoreThreadTimeOut = true  并且 Worker从队列中获取任务超时,并且线程数 > 1
                 * 2、allowCoreThreadTimeOut = true  并且 Worker从队列中获取任务超时,并且线程数 = 1 
                 * 而且队列为空
                 * 3、allowCoreThreadTimeOut = false 但是 线程数 > corePoolSize,而且 队列为空
                 */
                // 让ctl的值-1,返回null
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
               /*
                * timed = true,调用poll()等待keepAliveTime s从队列中取任务,然后程序往下走
                * timed = false,调用take(),直到队列中有任务,程序才往下走
                */ 
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                // 获取的任务Task不为空,那么直接返回Task
                if (r != null)
                    return r;
                // 获取的任务超时,标记超时timeOut=true
                timedOut = true;
            } catch (InterruptedException retry) {
            	  /*
            	   * 这种情况是:线程在从队列中阻塞等待任务时,被调用了Thread.interrupt(),那么就会跳到这里
            	   * 标记timeOut=false
            	   */
                timedOut = false;
            }
        }
    }

processWorkerExit()

这个方法主要是Worker执行退出后的一些操作

	/*
	 * 上面说过 completedAbruptly的含义
	 * true : 执行task出现异常,异常退出
	 * false: 正常回收      
	 * 
	 */
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
    	 // 判断Worker是否正常退出
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
        	 // 如果是异常退出,那么需要将ctl的值-1
            decrementWorkerCount();
		
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
        	 // 计算完成的任务总数
            completedTaskCount += w.completedTasks;
            // 把Worker从容器中移除
            workers.remove(w);
        } finally {
            mainLock.unlock();
        }
		 // 尝试去终止线程池,也就是把线程池状态变为TERMINATED
        tryTerminate();
		
		 // 获取ctl的值
        int c = ctl.get();
        // 判断当前线程池的状态是否小于STOP【也就是RUNNING或者SHUTDOWN】
        if (runStateLessThan(c, STOP)) {        	 
        	 // 判断当前线程是否正常退出
            if (!completedAbruptly) {            		
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                if (min == 0 && ! workQueue.isEmpty())
                    min = 1;
                // 判断当前线程池的线程数是否大于等于min
                if (workerCountOf(c) >= min)
                	  // 如果是 那么Worker直接退出
                    return; // replacement not needed
            }
            /*
             * 会有两种情况执行到这里,前提当前线程池的状态是RUNNING或者是SHUTDOWN:
             * 1、异常退出,也就是completedAbruptly为true
             * 2、正常退出,也就是completedAbruptly为false,但是线程数小于min
             */
            addWorker(null, false);
        }
    }

tryTerminate

每次回收Worker或者异常退出一个Worker,他都会是尝试去中断线程池

    final void tryTerminate() {
        for (;;) {
        	 // 获取ctl的值
            int c = ctl.get();
            /*
             * 这里有三种情况 直接return
             * 1、线程池状态还是RUNNING
             * 2、线程池状态大于等于TIDYING【也就是TIDYING或者TERMINATED】
             * 3、线程池状态是SHUTDOWN 而且队列不为空
             */
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            
            /*
             * 判断线程数是否不等于0
             */
            if (workerCountOf(c) != 0) { // Eligible to terminate
            	  /*
            	   * 回收阻塞的线程,这里实际上就是遍历Workers,然后调用每个Worker的Thread.interrupt()
            	   */
                interruptIdleWorkers(ONLY_ONE);
                return;
            }

            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
            		// 把线程池状态改为TIDYING
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                    		// 执行terminated钩子方法
                        terminated();
                    } finally {
                    		// 执行terminated方法后,把线程池状态改为TERMINATED
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }

shutdown()

这个方法是停止线程池,调用完这个方法后,进行往线程池里面提交任务,将不会被执行。但是如果队列里还有任务,那么会继续执行队列的任务。

    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            // 把线程池状态改变为SHUTDOWN
            advanceRunState(SHUTDOWN);
            // 去中断一些没事干在等待的Worker
            interruptIdleWorkers();
            // 执行onShutdown钩子函数
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        // 尝试去中断线程池
        tryTerminate();
    }
    private void advanceRunState(int targetState) {
        for (;;) {
            int c = ctl.get();
            if (runStateAtLeast(c, targetState) ||
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                break;
        }
    }
    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }
    
    void interruptIfStarted() {
          	Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
     }

shutdownNow()

这个方法跟shutdown()方法有点区别,它不管你队列里是否还有任务,它会里面停止,所以这个方法慎用,会造成Task丢失。

    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            // 把线程池状态改变为STOP
            advanceRunState(STOP);
            // 去中断一些没事干在等待的Worker
            interruptWorkers();
            // 获取队列中没有执行完的Task
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值