日志和告警数据挖掘经验谈——利用日志相似度进行聚类,利用时间进行关联分析...

本文分享了一个关于日志和告警数据挖掘的项目经验,涉及日志模式挖掘、归类、与告警的关联分析。通过字符串相似度算法进行日志归类,利用时间关联算法找出与告警相关联的日志类别,旨在为一线支持人员提供统计参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘自:http://www.36dsj.com/archives/75208

最近参与了了一个日志和告警的数据挖掘项目,里面用到的一些思路在这里和大家做一个分享。

项目的需求是收集的客户系统一个月300G左右的的日志和告警数据做一个整理,主要是归类(Grouping)和关联(Correlation),从而得到告警和日志的一些统计关系,这些统计结果可以给一线支持人员参考。

得到的数据主要分为两部分,一部分是告警的历史数据,这部分数据很少,只有50M左右,剩下的全部都是日志数据。日志数据大概有50多种不同类型,对应系统中不同的模块。每种类型的文件每天产生一个日志文件,所以总数大概是1500个左右的日志文件。文件大概都是这样的:A_2016-04-15.log, B_2016-04-15.log, …, A_2016-05-14.log, B_2016-05-14.log。每个文件在10M-1G之间不等。

日志挖掘

1. 日志的模式挖掘

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值