提升JSP应用程序的七大绝招

本文介绍了提升JSP和Servlet性能的多种实用方法,包括在init()方法中缓存数据、禁止自动重载、合理使用HttpSession等,帮助开发者有效改善Web应用性能。
 

你时常被客户抱怨JSP页面响应速度很慢吗?你想过当客户访问次数剧增时,你的WEB应用能承受日益增加的访 问量吗?本文讲述了调整JSPservlet的一些非常实用的方法,它可使你的servletJSP页面响应更快,扩展性更强。而且在用户数增加的情 况下,系统负载会呈现出平滑上长的趋势。在本文中,我将通过一些实际例子和配置方法使得你的应用程序的性能有出人意料的提升。其中,某些调优技术是在你的 编程工作中实现的。而另一些技术是与应用服务器的配置相关的。在本文中,我们将详细地描述怎样通过调整servletJSP页面,来提高你的应用程序的 总体性能。在阅读本文之前,假设你有基本的servletJSP的知识。
方法一:在servletinit()方法中缓存数据

当应用服务器初始化servlet实例之后,为客户端请求提供服务之前,它会调用这个servletinit()方法。在一个servlet的生命周 期中,init()方法只会被调用一次。通过在init()方法中缓存一些静态的数据或完成一些只需要执行一次的、耗时的操作,就可大大地提高系统性能。

例如,通过在init()方法中建立一个JDBC连接池是一个最佳例子,假设我们是用jdbc2.0DataSource接口来取得数据库连接,在通 常的情况下,我们需要通过JNDI来取得具体的数据源。我们可以想象在一个具体的应用中,如果每次SQL请求都要执行一次JNDI查询的话,那系统性能将 会急剧下降。解决方法是如下代码,它通过缓存DataSource,使得下一次SQL调用时仍然可以继续利用它:

  1.         public class ControllerServlet extends HttpServlet
  2.         {
  3.             private javax.sql.DataSource testDS = null
  4.             public void init(ServletConfig config) throws ServletException
  5.             {
  6.                 super.init(config); 
  7.                 Context ctx = null;
  8.                 try
  9.                 { 
  10.                     ctx = new InitialContext();
  11.                     testDS = (javax.sql.DataSource)ctx.lookup("jdbc/testDS");
  12.                 }
  13.                 catch(NamingException ne)
  14.                 {
  15.                     ne.printStackTrace(); 
  16.                 }
  17.                 catch(Exception e)
  18.                 {
  19.                     e.printStackTrace();
  20.                 }
  21.             }

  22.             public javax.sql.DataSource getTestDS()
  23.             {
  24.                 return testDS;
  25.             }
  26.             ...
  27.             ... 
  28.         }

方法 2:禁止servletJSP 自动重载(auto-reloading)

Servlet/JSP
提供了一个实用的技术,即自动重载技术,它为开发人员提供了一个好的开发环境,当你改变servletJSP页面后而不必重启 应用服务器。然而,这种技术在产品运行阶段对系统的资源是一个极大的损耗,因为它会给JSP引擎的类装载器(classloader)带来极大的负担。因 此关闭自动重载功能对系统性能的提升是一个极大的帮助。

方法 3: 不要滥用HttpSession 

在很多应 用中,我们的程序需要保持客户端的状态,以便页面之间可以相互联系。但不幸的是由于HTTP具有天生无状态性,从而无法保存客户端的状态。因此一般的应用 服务器都提供了session来保存客户的状态。在JSP应用服务器中,是通过HttpSession对像来实现session的功能的,但在方便的同 时,它也给系统带来了不小的负担。因为每当你获得或更新session时,系统者要对它进行费时的序列化操作。你可以通过对HttpSession的以下 几种处理方式来提升系统的性能:

(1)
如果没有必要,就应该关闭JSP页面中对HttpSession的缺省设置: 如果你没有明确指定的话,每个JSP页面都会缺省地创建一个HttpSession。如果你的JSP中不需要使用session的话,那可以通过如下的JSP页面指示符来禁止它:

<%@ page session="false"%>

(2)
不要在HttpSession中存放大的数据对像:如果你在HttpSession中存放大的数据对像的话,每当对它进行读写时,应用服务器都将对其进行 序列化,从而增加了系统的额外负担。你在HttpSession中存放的数据对像越大,那系统的性能就下降得越快。

(3)
当你不需要HttpSession时,尽快地释放它:当你不再需要session时,你可以通过调用HttpSession.invalidate()方法来释放它。

(4)
尽量将session的超时时间设得短一点:在JSP应用服务器中,有一个缺省的session的超时时间。当客户在这个时间之后没有进行任何操作的话, 系统会将相关的session自动从内存中释放。超时时间设得越大,系统的性能就会越低,因此最好的方法就是尽量使得它的值保持在一个较低的水平。

方法 4: 将页面输出进行压缩

压缩是解决数据冗余的一个好的方法,特别是在网络带宽不够发达的今天。有的浏览器支持gzip(GNU zip)进行来对HTML文件进行压缩,这种方法可以戏剧性地减少HTML文件的下载时间。因此,如果你将servletJSP页面生成的HTML页面 进行压缩的话,那用户就会觉得页面浏览速度会非常快。但不幸的是,不是所有的浏览器都支持gzip压缩,但你可以通过在你的程序中检查客户的浏览器是否支 持它。下面就是关于这种方法实现的一个代码片段:

  1.     public void doGet(HttpServletRequest request, HttpServletResponse response)
  2.             throws IOException, ServletException {
  3.         OutputStream out = null;
  4.         String encoding = request.getHeader("Accept-Encoding");
  5.         if (encoding != null && encoding.indexOf("gzip") != -1) {
  6.             // response.setHeader(arg0, arg1)
  7.             response.setHeader("Content-Encoding""gzip");
  8.             out = new GZIPOutputStream(response.getOutputStream());
  9.         } else if (encoding != null && encoding.indexOf("compress") != -1) {
  10.             response.setHeader("Content-Encoding""compress");
  11.             out = new ZipOutputStream(response.getOutputStream());
  12.         } else {
  13.             out = response.getOutputStream();
  14.         }
  15.          ...
  16.          ...
  17.     }
方法 5: 使用线程池

应用服务器缺省地为每个不同的客户端请求创建一个线程进行处理,并为它们分派service()方法,当service()方法调用完成后,与之相应的 线程也随之撤消。由于创建和撤消线程会耗费一定的系统资源,这种缺省模式降低了系统的性能。但所幸的是我们可以通过创建一个线程池来改变这种状况。另外, 我们还要为这个线程池设置一个最小线程数和一个最大线程数。在应用服务器启动时,它会创建数量等于最小线程数的一个线程池,当客户有请求时,相应地从池从 取出一个线程来进行处理,当处理完成后,再将线程重新放入到池中。如果池中的线程不够地话,系统会自动地增加池中线程的数量,但总量不能超过最大线程数。 通过使用线程池,当客户端请求急剧增加时,系统的负载就会呈现的平滑的上升曲线,从而提高的系统的可伸缩性。

方法 6: 选择正确的页面包含机制

JSP中有两种方法可以用来包含另一个页面:1、使用include指示符(<%@ includee file=”test.jsp” %>)2、使用jsp指示符(<jsp:includee page=”test.jsp” flush=”true”/>)。在实际中我发现,如果使用第一种方法的话,可以使得系统性能更高。

方法 7:正确地确定javabean的生命周期

JSP
的一个强大的地方就是对javabean的支持。通过在JSP页面中使用<jsp:useBean>标签,可以将javabean直接插入到一个JSP页面中。它的使用方法如下:

<jsp:useBean id="name" scope="page|request|session|application" class=
"package.className" type="typeName">
</jsp:useBean> 

其中scope属性指出了这个bean的生命周期。缺省的生命周期为page。如果你没有正确地选择bean的生命周期的话,它将影响系统的性能。

举例来说,如果你只想在一次请求中使用某个bean,但你却将这个bean的生命周期设置成了session,那当这次请求结束后,这个bean将仍然 保留在内存中,除非session超时或用户关闭浏览器。这样会耗费一定的内存,并无谓的增加了JVM垃圾收集器的工作量。因此为bean设置正确的生命 周期,并在bean的使命结束后尽快地清理它们,会使用系统性能有一个提高

其它一些有用的方法 

(1)
在字符串连接操作中尽量不使用操作符:在java编程中,我们常常使用操作符来将几个字符串连接起来,但你或许从来没有想到过它居然会对系统 性能造成影响吧?由于字符串是常量,因此JVM会产生一些临时的对像。你使用的越多,生成的临时对像就越多,这样也会给系统性能带来一些影响。解决 的方法是用StringBuffer对像来代替操作符。

(2)
避免使用System.out.println()方法:由于System.out.println()是一种同步调用,即在调用它时,磁盘I/O操作必 须等待它的完成,因此我们要尽量避免对它的调用。但我们在调试程序时它又是一个必不可少的方便工具,为了解决这个矛盾,我建议你最好使用Log4j工具 (http://Jakarta.apache.org ),它既可以方便调试,而不会产生System.out.println()这样的方法。

(3) ServletOutputStream
PrintWriter的权衡:使用PrintWriter可能会带来一些小的开销,因为它将所有的原始输出都转换为字符流来输出,因此如果使用它来作为 页面输出的话,系统要负担一个转换过程。而使用ServletOutputStream作为页面输出的话就不存在一个问题,但它是以二进制进行输出的。因 此在实际应用中要权衡两者的利弊。

总结

本文的目的是通过对servletJSP的一些调优技术来极大地提高你 的应用程序的性能,并因此提升整个J2EE应用的性能。通过这些调优技术,你可以发现其实并不是某种技术平台(比如J2EE.NET之争)决定了你的应 用程序的性能,重要是你要对这种平台有一个较为深入的了解,这样你才能从根本上对自己的应用程序做一个优化!
下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
【集群划分】基于kmeans的电压调节的集群划分【IEEE33节点】内容概要:本文围绕基于KMeans算法的电压调节集群划分展开,以IEEE33节点配电网为研究对象,探讨含分布式光伏的配电网中电压协调控制问题。通过KMeans聚类算法将网络节点划分为若干电压调控集群,旨在降低电压越限风险、提升配电网运行稳定性。文中结合Matlab代码实现,详细展示了集群划分过程、聚类结果可视化及后续电压协调控制策略的设计思路,适用于电力系统中分布式能源接入带来的电压管理挑战。该方法有助于实现分区治理、优化资源配置,并为后续的分布式控制提供结构基础。; 适合人群:具备电力系统基础知识,熟悉Matlab编程,从事配电网优化、分布式能源管理或智能电网相关研究的研究生及科研人员;有一定机器学习背景的工程技术人员。; 使用场景及目标:①应用于含高渗透率光伏发电的配电网电压调控研究;②用于复现IEEE33节点系统中的集群划分与电压协调控制模型;③支撑科研论文复现、课题开发与算法验证,推动智能配电网的分区协同控制技术发展; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注KMeans在电网拓扑数据上的特征选取与距离度量方式,理解聚类结果对电压控制性能的影响,并可进一步拓展至动态聚类或多目标优化集成。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值