mapreduce的二次排序 SecondarySort

本文详细解析了在Hadoop环境下如何通过设置二次排序来查找特定条件下的最大温度值,包括Mapper、Reducer、分区器、排序比较器及分组比较器的作用与实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  在看Hadoop The definitive guide 时,关于二次排序,在设置好setGroupingComparatorClass 后一直不明白为什么reduce的入参就是要查询的年最高温度,代码里没有看到是怎么实现的:



代码:


// cc MaxTemperatureUsingSecondarySort Application to find the maximum temperature by sorting temperatures in the key
import java.io.IOException;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

// vv MaxTemperatureUsingSecondarySort
public class MaxTemperatureUsingSecondarySort
  extends Configured implements Tool {
  
  static class MaxTemperatureMapper
    extends Mapper<LongWritable, Text, IntPair, NullWritable> {
  
    private NcdcRecordParser parser = new NcdcRecordParser();
    
    @Override
    protected void map(LongWritable key, Text value,
        Context context) throws IOException, InterruptedException {
      
      parser.parse(value);
      if (parser.isValidTemperature()) {
        /*[*/context.write(new IntPair(parser.getYearInt(),
            parser.getAirTemperature()), NullWritable.get());/*]*/
      }
    }
  }
  
  static class MaxTemperatureReducer
    extends Reducer<IntPair, NullWritable, IntPair, NullWritable> {
  
   <span style="color:#ff0000;"> @Override
    protected void reduce(IntPair key, Iterable<NullWritable> values,
        Context context) throws IOException, InterruptedException {
      
      /*[*/context.write(key, NullWritable.get());/*]*/
    }</span>
  }
  
  public static class FirstPartitioner
    extends Partitioner<IntPair, NullWritable> {

    @Override
    public int getPartition(IntPair key, NullWritable value, int numPartitions) {
      // multiply by 127 to perform some mixing
      return Math.abs(key.getFirst() * 127) % numPartitions;
    }
  }
  
  public static class KeyComparator extends WritableComparator {
    protected KeyComparator() {
      super(IntPair.class, true);
    }
    @Override
    public int compare(WritableComparable w1, WritableComparable w2) {
      IntPair ip1 = (IntPair) w1;
      IntPair ip2 = (IntPair) w2;
      int cmp = IntPair.compare(ip1.getFirst(), ip2.getFirst());
      if (cmp != 0) {
        return cmp;
      }
      return -IntPair.compare(ip1.getSecond(), ip2.getSecond()); //reverse
    }
  }
  
<span style="color:#ff0000;">//此处只是将相同的年份归并为一个组</span>
  public static class GroupComparator extends WritableComparator {
    protected GroupComparator() {
      super(IntPair.class, true);
    }
    @Override
    public int compare(WritableComparable w1, WritableComparable w2) {
      IntPair ip1 = (IntPair) w1;
      IntPair ip2 = (IntPair) w2;
      return IntPair.compare(ip1.getFirst(), ip2.getFirst());
    }
  }

  @Override
  public int run(String[] args) throws Exception {
    Job job = JobBuilder.parseInputAndOutput(this, getConf(), args);
    if (job == null) {
      return -1;
    }
    
    job.setMapperClass(MaxTemperatureMapper.class);
    /*[*/job.setPartitionerClass(FirstPartitioner.class);/*]*/
    /*[*/job.setSortComparatorClass(KeyComparator.class);/*]*/
    /*[*/job.setGroupingComparatorClass(GroupComparator.class);/*]*/
    job.setReducerClass(MaxTemperatureReducer.class);
    job.setOutputKeyClass(IntPair.class);
    job.setOutputValueClass(NullWritable.class);
    
    return job.waitForCompletion(true) ? 0 : 1;
  }
  
  public static void main(String[] args) throws Exception {
    int exitCode = ToolRunner.run(new MaxTemperatureUsingSecondarySort(), args);
    System.exit(exitCode);
  }
}
// ^^ MaxTemperatureUsingSecondarySort



查询后发现二次排序的园里是:

1:在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass设置key比较函数类,则使用key的实现的compareTo方法。

2:在reduce阶段,reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。然后开始构造一个key对应的value迭代器。这时就要用到分组,使用jobjob.setGroupingComparatorClass设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值