hdu 6198 number number number

题目:

http://acm.hdu.edu.cn/showproblem.php?pid=6198

题意:

如果一个数字 n 可以等于k个斐波那契数的和(这些斐波那契数可以相等),那么 n 就称为mifgood,否则就是 mifbad ,当给定 k 时,求最小mifbad数字

思路:

可以推出规律,当 k=1 时,答案为 4 ,当k=2时,可以发现,当首次遇到相邻两个 fib 数字 ai , ai+1 之差大于 4 时,那么第一个mifbad就一定是 ai+4 ,因为 ai+1 , ai+2 , ai+3 都是可以凑出来的,可以发现答案是 8+4=12 ;当 k=3 时,首次遇到相邻两个 fib 数字 ai , ai+1 之差大于 12 时,那么 ai+12 是一定凑不出来的,答案就是 21+12=33 …一直推下去,可以发现 4=51 12=131 33=341 88=891 …答案就是 fib(4+2k1)1 ,用矩阵快速幂求解

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int N = 10 + 10;
const ll mod = 998244353;

struct matrix
{
    int row, col;
    ll mat[N][N];
    matrix(int _row=0, int _col=0)
    {
        init(_row, _col);
    }
    void init(int _row, int _col)
    {
        row = _row, col = _col;
        memset(mat, 0, sizeof mat);
    }
    matrix operator* (matrix b)
    {
        matrix c(row, b.col);
        for(int i = 1; i <= row; i++)
            for(int j = 1; j <= b.col; j++)
                for(int k = 1; k <= col; k++)
                    c.mat[i][j] = (c.mat[i][j] + mat[i][k] * b.mat[k][j] % mod) % mod;
        return c;
    }
};
matrix mod_pow(matrix a, ll b, ll p)
{
    matrix ans(2, 2);
    ans.mat[1][1] = ans.mat[2][2] = 1;
    while(b)
    {
        if(b & 1) ans = ans * a;
        a = a * a;
        b >>= 1;
    }
    return ans;
}
int main()
{
    int k;
    while(~ scanf("%d", &k))
    {
        k = 4 + 2*k - 1;
        matrix a(2, 2);
        a.mat[1][1] = 1, a.mat[1][2] = 1;
        a.mat[2][1] = 1, a.mat[2][2] = 0;
        a = mod_pow(a, k, mod);
        printf("%lld\n", a.mat[1][2] - 1);
    }
    return 0;
}
### HDU 1466 Problem Description and Solution The problem **HDU 1466** involves calculating the expected number of steps to reach a certain state under specific conditions. The key elements include: #### Problem Statement Given an interactive scenario where operations are performed on numbers modulo \(998244353\), one must determine the expected number of steps required to achieve a particular outcome. For this type of problem, dynamic programming (DP) is often employed as it allows breaking down complex problems into simpler subproblems that can be solved iteratively or recursively with memoization techniques[^1]. In more detail, consider the constraints provided by similar problems such as those found in references like HDU 6327 which deals with random sequences using DP within given bounds \((1 \leq T \leq 10, 4 \leq n \leq 100)\)[^2]. These types of constraints suggest iterative approaches over small ranges might work efficiently here too. Additionally, when dealing with large inputs up to \(2 \times 10^7\) as seen in reference materials related to counting algorithms [^4], efficient data structures and optimization strategies become crucial for performance reasons. However, directly applying these methods requires understanding how they fit specifically into solving the expectation value calculation involved in HDU 1466. For instance, if each step has multiple outcomes weighted differently based on probabilities, then summing products of probability times cost across all possible states until convergence gives us our answer. To implement this approach effectively: ```python MOD = 998244353 def solve_expectation(n): dp = [0] * (n + 1) # Base case initialization depending upon problem specifics for i in range(1, n + 1): total_prob = 0 # Calculate transition probabilities from previous states for j in transitions_from(i): # Placeholder function representing valid moves prob = calculate_probability(j) next_state_cost = get_next_state_cost(j) dp[i] += prob * (next_state_cost + dp[j]) % MOD total_prob += prob dp[i] %= MOD # Normalize current state's expectation due to accumulated probability mass if total_prob != 0: dp[i] *= pow(total_prob, MOD - 2, MOD) dp[i] %= MOD return dp[n] # Example usage would depend heavily on exact rules governing transitions between states. ``` This code snippet outlines a generic framework tailored towards computing expectations via dynamic programming while adhering strictly to modular arithmetic requirements specified by the contest question format.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值