51nod1268 和为K的组合 折半枚举

本文针对一个具体的背包问题,给出了通过折半枚举预处理结合二分查找的算法解决方案。该算法能够有效地判断是否能从一组正整数中选取若干个数,使其和等于给定的目标值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1268

题意:

给出N个正整数组成的数组A,求能否从中选出若干个,使他们的和为K。如果可以,输出:”Yes”,否则输出”No”。
Input
第1行:2个数N, K, N为数组的长度, K为需要判断的和(2 <= N <= 20,1 <= K <= 10^9)
第2 - N + 1行:每行1个数,对应数组的元素A[i] (1 <= A[i] <= 10^6)
Output
如果可以,输出:”Yes”,否则输出”No”。

思路:

折半枚举预处理,然后二分查找即可

#include <bits/stdc++.h>

using namespace std;

const int N = 10000 + 10;

int a[N], b[N];
int arr[N];

int work(int *a, int *arr, int m, int len)
{
    int k = 0;
    for(int i = 0; i < (1<<m); i++)
    {
        ++k;
        for(int j = 0; j < m; j++)
            if((i>>j) & 1) a[k] += arr[len-j];
    }
    return k;
}
int main()
{
    int n, k;
    while(~ scanf("%d%d", &n, &k))
    {
        for(int i = 1; i <= n; i++) scanf("%d", &arr[i]);
        memset(a, 0, sizeof a);
        memset(b, 0, sizeof b);
        int ka = work(a, arr, n / 2, n / 2);
        int kb = work(b, arr, n - n/2, n);
        sort(a + 1, a + 1 + ka);
        sort(b + 1, b + 1 + kb);
        bool flag = false;
        for(int i = 1; i <= ka; i++)
        {
            if(binary_search(b + 1, b + 1 + kb, k - a[i]))
            {
                flag = true; break;
            }
        }
        puts(flag ? "Yes" : "No");
    }
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行组合**: - 由于 `N` `M` 的最大值为 8,因此可以枚举所有可能的行组合组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行列需要修改,并且注意行列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行列的枚举组合以减少计算时间? 2. 在计算行列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值