题目:
http://poj.org/problem?id=2104
题意:
求区间[l,r]内第k小的元素
思路:
用划分树,主席树,平方分割写过这道题,用归并树搞一下。归并树就是在建树的时候对数组进行归并排序,并保存每一步的归并结果,因此从树的底部到树的顶部就是归并排序的实现过程。然后二分枚举答案,对归并树进行查询,挺好理解的,就是效率不怎么高,这四种方法,按效率排序:划分树>主席树>归并树>平方分割
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 100010;
struct node
{
int l, r;
}s[N*4];
int arr[N], seg[20][N];
void build(int l, int r, int dep, int k)
{
s[k].l = l, s[k].r = r;
if(l == r)
{
seg[dep][l] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, dep + 1, k << 1);
build(mid + 1, r, dep + 1, k << 1|1);
int i = l, j = mid + 1, p = l;
while(i <= mid && j <= r)
{
if(seg[dep+1][i] < seg[dep+1][j]) seg[dep][p++] = seg[dep+1][i++];
else seg[dep][p++] = seg[dep+1][j++];
}
while(i <= mid) seg[dep][p++] = seg[dep+1][i++];
while(j <= r) seg[dep][p++] = seg[dep+1][j++];
}
int query(int l, int r, int dep, int k, int x)
{
if(s[k].l > r || s[k].r < l) return 0;
if(l <= s[k].l && s[k].r <= r)
return upper_bound(&seg[dep][s[k].l], &seg[dep][s[k].r]+1, x) - &seg[dep][s[k].l];
return query(l, r, dep + 1, k << 1, x) + query(l, r, dep + 1, k << 1|1, x);
}
int main()
{
int t, n, m;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &arr[i]);
build(1, n, 1, 1);
while(m--)
{
int i, j, k;
scanf("%d%d%d", &i, &j, &k);
int l = 1, r = n, res;
while(l <= r)
{
int mid = (l + r) >> 1;
int tmp = query(i, j, 1, 1, seg[1][mid]);
if(tmp >= k) res = mid, r = mid - 1;
else l = mid + 1;
}
printf("%d\n", seg[1][res]);
}
}
return 0;
}