题目:http://www.spoj.com/problems/GRASSPLA/en/
题意:给定一棵树,树有边权,初始边权都为0。有两种操作:第一种是两点之间的边权均加1,第二种是求两点之间的边权和。
思路:树链剖分啊,线段树区间求和。写成多实例一直莫名RE,改成单实例就过了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int N = 100010;
struct edge
{
int to, next;
} g[N*2];
struct node
{
int l, r;
ll sum, mark;
} s[N*4];
int dep[N], top[N], son[N], siz[N], fat[N], id[N], head[N];
int n, m, cnt, num;
void add_edge(int v, int u)
{
g[cnt].to = u;
g[cnt].next = head[v];
head[v] = cnt++;
}
void dfs1(int v, int fa, int d)
{
dep[v] = d, siz[v] = 1, fat[v] = fa, son[v] = 0;
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(u != fa)
{
dfs1(u, v, d + 1);
siz[v] += siz[u];
if(siz[son[v]] < siz[u]) son[v] = u;
}
}
}
void dfs2(int v, int tp)
{
top[v] = tp, id[v] = ++num;
if(son[v]) dfs2(son[v], tp);
for(int i = head[v]; i != -1; i = g[i].next)
{
int u = g[i].to;
if(u != fat[v] && u != son[v]) dfs2(u, u);
}
}
void push_up(int k)
{
s[k].sum = s[k<<1].sum + s[k<<1|1].sum;
}
void push_down(int k)
{
if(s[k].mark)
{
s[k<<1].mark += s[k].mark;
s[k<<1|1].mark += s[k].mark;
s[k<<1].sum += (s[k<<1].r - s[k<<1].l + 1) * s[k].mark;
s[k<<1|1].sum += (s[k<<1|1].r - s[k<<1|1].l + 1) * s[k].mark;
s[k].mark = 0;
}
}
void build(int l, int r, int k)
{
s[k].l = l, s[k].r = r, s[k].mark = 0, s[k].sum = 0;
if(l == r) return;
int mid = (l + r) >> 1;
build(l, mid, k << 1);
build(mid + 1, r, k << 1|1);
push_up(k);
}
void update(int l, int r, int k)
{
if(l <= s[k].l && s[k].r <= r)
{
s[k].sum += s[k].r - s[k].l + 1;
s[k].mark += 1;
return;
}
push_down(k);
int mid = (s[k].l + s[k].r) >> 1;
if(l <= mid) update(l, r, k << 1);
if(r > mid) update(l, r, k << 1|1);
push_up(k);
}
void renew(int v, int u)
{
int t1 = top[v], t2 = top[u];
while(t1 != t2)
{
if(dep[t1] < dep[t2])
swap(t1, t2), swap(v, u);
update(id[t1], id[v], 1);
v = fat[t1], t1 = top[v];
}
if(v == u) return;
if(dep[v] > dep[u]) swap(v, u);
update(id[son[v]], id[u], 1);
}
ll query(int l, int r, int k)
{
if(l <= s[k].l && s[k].r <= r)
return s[k].sum;
push_down(k);
int mid = (s[k].l + s[k].r) >> 1;
ll ans = 0;
if(l <= mid) ans += query(l, r, k << 1);
if(r > mid) ans += query(l, r, k << 1|1);
push_up(k);
return ans;
}
ll seek(int v, int u)
{
int t1 = top[v], t2 = top[u];
ll ans = 0;
while(t1 != t2)
{
if(dep[t1] < dep[t2])
swap(t1, t2), swap(v, u);
ans += query(id[t1], id[v], 1);
v = fat[t1], t1 = top[v];
}
if(v == u) return ans;
if(dep[v] > dep[u]) swap(v, u);
return ans + query(id[son[v]], id[u], 1);
}
void slove()
{
char ch;
int a, b;
while(m--)
{
scanf(" %c%d%d", &ch, &a, &b);
if(ch == 'P') renew(a, b);
else printf("%lld\n", seek(a, b));
}
}
int main()
{
int a, b;
scanf("%d%d", &n, &m);
memset(head, -1, sizeof head);
cnt = num = 0;
for(int i = 1; i <= n - 1; i++)
{
scanf("%d%d", &a, &b);
add_edge(a, b);
add_edge(b, a);
}
dfs1(1, 0, 1);
dfs2(1, 1);
build(1, num, 1);
slove();
return 0;
}