三十三期百度技术沙龙笔记整理

百度的陈天健介绍了推荐引擎计算平台架构,包括流式计算、队列工作器、多样化索引和及时计算,以应对用户访问量的成倍增长。而豆瓣的王守崑则侧重于推荐算法的选择,涉及复杂度、增量更新、用户群差异、算法改变、早期用户群和大众用户群的区别,以及推荐系统存在的item饱和期。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       此次技术沙龙是由百度的高级架构师陈天健和豆瓣首席科学家王守崑为主讲,大主题是推荐系统。

       陈天健的主要话题是百度推荐引擎计算平台架构中的流式计算架构。中间有一种因为几个短信有点错过,等视频出来再听一遍,这个笔记基本没啥整理,主要是个备档,感兴趣的同学可以直接去InfoQ看视频。下面把记的笔记抄上来:

       NLP---当前分析热点;

       传统架构以Hadoop为主,流式计算加速数据处理;

       QueueWorker;

       流式计算系统,拓扑S4、DAG;

       多样索引

       及时计算获得用户访问成倍增长。

       整个工程引擎化----这部分需要重听

       推荐系统的很多东西需要验证改进

       百度的推荐引擎计算平台可能会公开服务

       下面是豆瓣首席科学家王守崑的部分,他的主要是围绕算法本身的选择。

       算法复杂度选择

       增量更新

       算法根据用户群、产品、计算框架改变

        早期用户群和大众用户群有所区别

        豆瓣的推荐存在一个item饱和期-----这个只是我现场想到的,非演讲内容。

        缺失值数据也有其作用

        矩阵分解和生成模型

         文本分析:生成模型、隐马模型、高斯混合模型、贝叶斯模型那个、LDA、RBM。

          条目增长趋于稳定

        长期指标的改进靠人

        从传统媒体信息经济走向现代App体验经济

         信息逐渐私有和封闭,要么是平台,要么是平台的一部分。

内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值