POJ 2195--Going Home

本文介绍了三种不同的最小费用最大流算法实现:Kuhn-Munkres算法(KM)、最短路径优先算法(SPFA)及贝尔曼-福特算法(Bellman-Ford)。通过实例讲解了如何使用这些算法来解决具体的匹配问题。

最小费用最大流问题,同POJ2516,此题较之要简单些,容量只为1, 花费为人到屋子的哈密顿距离,且二分匹配中X,Y规模一致。


KM:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define maxN 105
#define INF 0X7F7F

short cost[maxN][maxN];
short lx[maxN],ly[maxN];
char visx[maxN],visy[maxN];
short match[maxN];
short slack[maxN];
short minCost;
short N;

bool DFS(short x)
{
    short i,diff;
    visx[x] = true;
    for(i = 1;i <= N;i++)
    {
        if(!visy[i])
        {
            diff = lx[x]+ly[i]-cost[x][i];
            if(diff == 0)
            {
                visy[i] = true;
                if(match[i] == 0||DFS(match[i]))
                {
                    match[i] = x;
                    return 1;
                }
            }
            else if(slack[i] > diff)
            {
                slack[i] = diff;
            }
        }
    }
    return 0;
}

int KM()
{
    short i,j;
    short d;
    memset(match,0,sizeof(match));
    memset(lx,0X80,sizeof(lx));
    memset(ly,0,sizeof(ly));
    for(i = 1;i <= N;i++)
    {
        for(j = 1;j <= N;j++)
        {
            if(lx[i] < cost[i][j])
            {
                lx[i] = cost[i][j];
            }
        }
    }
    for(i = 1;i <= N;i++)
    {
        memset(slack,0X7F,sizeof(slack));
        while(1)
        {
            memset(visx,0,sizeof(visx));
            memset(visy,0,sizeof(visy));
            if(DFS(i))          //找到增广路径就跳出循环,没找到改标号
            {
                break;
            }
            d = INF;
            for(j = 1;j <= N;j++)
            {
                if(!visy[j]&&slack[j] < d)
                {
                    d = slack[j];
                }
            }
            for(j = 1;j <= N;j++)
            {
                if(visx[j])
                {
                    lx[j] -= d;
                }
                if(visy[j])
                {
                    ly[j] += d;
                }
                else
                {
                    slack[j] -= d;
                }
            }
        }
    }
    minCost = 0;
    for(i = 1;i <= N;i++)
    {
        minCost += cost[match[i]][i];
    }
    printf("%d\n",-1*minCost);
    return 0;
}

int main()
{
    int i,j,M;
    int mNum,houseNum;
    char c;
    short mXY[maxN][2],hXY[maxN][2];
    while(~scanf("%d%d",&N,&M)&&N)
    {
        minCost = 0;
        memset(cost,0,sizeof(cost));
        mNum = houseNum = 1;
        getchar();
        for(i = 1;i <= N;i++)
        {
            for(j = 1;j <= M;j++)
            {
                c = getchar();
                if(c == 'm')
                {
                    mXY[mNum][0] = i;
                    mXY[mNum++][1] = j;
                }
                else if(c == 'H')
                {
                    hXY[houseNum][0] = i;
                    hXY[houseNum++][1] = j;
                }
            }
            getchar();
        }
        N = --houseNum;
        for(i = 1;i <= houseNum;i++)
        {
            for(j = 1;j <= houseNum;j++)
            {
                cost[i][j] = -1*(abs(mXY[i][0]-hXY[j][0])+abs(mXY[i][1]-hXY[j][1]));
            }
        }
        KM();
    }
    return 0;
}


SPFA:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define maxN 105
#define INF 0X7F7F

int dest;
short capacity[(maxN)<<1][(maxN)<<1];
short cost[(maxN)<<1][(maxN)<<1];
short minCost;

short spfa(short* fa)
{
    short i,now;
    short minDis[(maxN)<<1];
    char vis[(maxN)<<1];
    memset(vis,0,sizeof(vis));
    memset(minDis,127,sizeof(minDis));
    minDis[0] = 0;
    queue<short> q;
    q.push(0);
    vis[0] = true;
    while(!q.empty())
    {
        now = q.front();
        q.pop();
        vis[now] = false;
        for(i = 1;i <= dest;i++)
        {
            if(capacity[now][i] > 0&&minDis[now]+cost[now][i] < minDis[i])
            {
                fa[i] = now;
                minDis[i] = minDis[now]+cost[now][i];
                if(!vis[i])
                {
                    q.push(i);
                    vis[i] = true;
                }
            }
        }
    }
    return minDis[dest];
}

int minCost_maxFlow()
{
    short x;
    short fa[(maxN)<<1];
    while(spfa(fa) != INF)
    {
        x = dest;
        while(x)
        {
            minCost += cost[fa[x]][x];
            capacity[fa[x]][x] = 0;
            capacity[x][fa[x]] = 1;
            x = fa[x];
        }
    }
    printf("%d\n",minCost);
    return 0;
}

int main()
{
    int i,j,N,M;
    int mNum,houseNum;
    char c;
    short mXY[maxN][2],hXY[maxN][2];
    while(~scanf("%d%d",&N,&M)&&N)
    {
        minCost = 0;
        memset(capacity,0,sizeof(capacity));
        memset(cost,0,sizeof(cost));
        mNum = houseNum = 1;
        getchar();
        for(i = 1;i <= N;i++)
        {
            for(j = 1;j <= M;j++)
            {
                c = getchar();
                if(c == 'm')
                {
                    mXY[mNum][0] = i;
                    mXY[mNum++][1] = j;
                }
                else if(c == 'H')
                {
                    hXY[houseNum][0] = i;
                    hXY[houseNum++][1] = j;
                }
            }
            getchar();
        }
        houseNum--;
        dest = (houseNum<<1)|1;
        for(i = 1;i <= houseNum;i++)
        {
            capacity[0][i] = capacity[houseNum+i][dest] = 1;
            for(j = 1;j <= houseNum;j++)
            {
                capacity[i][houseNum+j] = 1;
                cost[i][houseNum+j] = abs(mXY[i][0]-hXY[j][0])+abs(mXY[i][1]-hXY[j][1]);
                cost[houseNum+j][i] = -1*cost[i][houseNum+j];
            }
        }
        minCost_maxFlow();
    }
    return 0;
}

Bellman_Ford:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
#define maxN 105
#define maxE 20200
#define INF 0X7F7F

int dest;
short capacity[(maxN)<<1][(maxN)<<1];
short cost[(maxN)<<1][(maxN)<<1];
short edges[maxE][2];
short edgeNum;
short minCost;

int generateEdge()
{
    edgeNum = 0;
    short i,j;
    for(i = 0;i < dest;i++)
    {
        for(j = 1;j <= dest;j++)
        {
            if(capacity[i][j] > 0)
            {
                edges[edgeNum][0] = i;
                edges[edgeNum++][1] = j;
            }
        }
    }
    return 1;
}
short bellman_ford(short* fa)
{
    short i,j;
    short x,y;
    short minDis[(maxN)<<1];
    char IsRelax;
    memset(minDis,0x7F,sizeof(minDis));
    minDis[0] = 0;
    for(i = 0;i < dest;i++)
    {
        IsRelax = false;
        for(j = 0;j < edgeNum;j++)
        {
            x = edges[j][0];
            y = edges[j][1];
            if(minDis[y] > minDis[x]+cost[x][y])
            {
                fa[y] = x;
                minDis[y] = minDis[x]+cost[x][y];
                IsRelax = true;
            }
        }
        if(!IsRelax)
            break;
    }
    return minDis[dest];
}

int minCost_maxFlow()
{
    short x;
    short fa[(maxN)<<1];
    while(generateEdge()&&bellman_ford(fa) != INF)
    {
        x = dest;
        while(x)
        {
            minCost += cost[fa[x]][x];
            capacity[fa[x]][x] = 0;
            capacity[x][fa[x]] = 1;
            x = fa[x];
        }
    }
    printf("%d\n",minCost);
    return 0;
}

int main()
{
    int i,j,N,M;
    int mNum,houseNum;
    char c;
    short mXY[maxN][2],hXY[maxN][2];
    while(~scanf("%d%d",&N,&M)&&N)
    {
        minCost = 0;
        memset(capacity,0,sizeof(capacity));
        memset(cost,0,sizeof(cost));
        mNum = houseNum = 1;
        getchar();
        for(i = 1;i <= N;i++)
        {
            for(j = 1;j <= M;j++)
            {
                c = getchar();
                if(c == 'm')
                {
                    mXY[mNum][0] = i;
                    mXY[mNum++][1] = j;
                }
                else if(c == 'H')
                {
                    hXY[houseNum][0] = i;
                    hXY[houseNum++][1] = j;
                }
            }
            getchar();
        }
        houseNum--;
        dest = (houseNum<<1)|1;
        for(i = 1;i <= houseNum;i++)
        {
            capacity[0][i] = capacity[houseNum+i][dest] = 1;
            for(j = 1;j <= houseNum;j++)
            {
                capacity[i][houseNum+j] = 1;
                cost[i][houseNum+j] = abs(mXY[i][0]-hXY[j][0])+abs(mXY[i][1]-hXY[j][1]);
                cost[houseNum+j][i] = -1*cost[i][houseNum+j];
            }
        }
        minCost_maxFlow();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值