链表中导数第K个结点(快慢指针)

本文介绍了一种利用快慢指针的方法来找出链表中倒数第K个节点的有效策略。通过实例演示了如何初始化两个指针并保持一定距离,最终使慢指针恰好指向目标节点。

点击打开链接题目描述

输入一个链表,输出该链表中倒数第k个结点。

快慢指针的介绍

快慢指针中的快慢指的是移动的步长,即每次向前移动速度的快慢。例如可以让快指针每次沿链表向前移动2,慢指针每次向前移动1次。

判断单链表是否为循环链表

在有序链表中寻找中位数

如果链表为存在环,如果找到环的入口点?


/*
struct ListNode {
int val;
struct ListNode *next;
ListNode(int x) :
val(x), next(NULL) {
}
};*/
class Solution {
public:
    ListNode* FindKthToTail( ListNode* pListHead, unsigned int k ) {
    if ( pListHead == NULL||k<=0 )
          return NULL;
      
ListNode* nptr=pListHead;
ListNode* kptr;
for ( unsigned int i = 0; i < k; ++i ) {
if( nptr!=NULL )
               nptr = nptr->next;
            else
                return NULL;
}


kptr = pListHead;
while ( nptr!= NULL ) {
kptr = kptr->next;
nptr = nptr->next;

}
        return kptr; 
    }
};

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值