Squeeze Excitation Module 对网络的改进分析

SENet通过Squeeze-and-Excitation模块引入通道注意力机制,增强特征表达,实现在多种网络上的性能提升,如ResNet和Inception。该模块通过全局平均池化压缩空间信息,利用全连接层调整通道权重,实现对有用特征的增强和无用特征的抑制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Squeeze-and-Excitation Networks

  SE-net 来自于Momenta 孙刚团队

  SE的设计思路:

    从卷积操作的实际作用来考虑,conv 把局部空间信息和通道信息组合起来,组合之后形成FM上的值,之前大部分都是空间上做的。

    对channel考虑的少,但是卷积本身就可以学到通道之间的组织信息,为什么还要在重新学一遍呢?

    那思考densenet显式连接各层,resnet可以连到,DN为何要再连一次?

    我们期望特征学习能力,但是需要显式建模来帮助学习

    

  1 SE-net的灵感

  VGG 网络将 Alexnet 7*7 和 5*5  替换成了3*3 的卷积核

  Wide Resnet如下右:

  

 

   除此之外,GoogleNet 内部inxeption 实际使用的是一个多尺度 的结构。

  googlenet 是将卷积在空间维度上进行组合

  ResNeXt 是将左边的分支结构极端化,在不同的通道上进行group conversation,最后concat

 

  我们希望conv filter 可以在local receptive fields的基础上 融合 channel-wise 和 spatial 的信息作融合。

  

  下图左边inception将卷积核在空间上进行了组合,右图inside-outsideNetwork 将不同方向的卷积在空间上组合到了一起

  

  

  2 Squeeze-and-Excitation Networks

  网络是否可以在通道关系方面做增强呢?

  动机:

  对于通道内部依赖做了显示的建模,选择强化有用的特征,抑制无用的特征

  

  SE module 结构:

  Ftr:X到U的卷积过程 ,但是通道之间的关系并没有发生变化:

  Fsq:将每个通道做了一个squeeze操作,将每个通道表示成了一个标量,得到per channel的描述

  Fex:将per channel标量进行“激活”,可以理解为算出了per channel的W

  最后将per channel的W乘回到原来的feature map上得到加权后的channel,将channel 做了恰当的融合

  SE-Module 可以用于网络的任意阶段

  squeeze 操作保证了,在网络的早期感受野就可以大到全图的范围。

  

  SE-inception Module and SE-ResNet Module:

  下图左边将Inception Module 转化成SE 模块,在此操作中使用squeeze操作是Global polling 操作,也可以使用Global conv 操作,但是考虑到feature map 比较大的时候,G C 的W 也会比较大,所以选择用pooling,一种max 一种average plooing

  最终选择的是average pooling,主要的考虑是,如果做检测任务,输入FM 大小是变化的,average 基本可以保持能量。如果用max FM 越大,能量不能保持,比如小的FM 求max 和 大的 FM 求 max 在测试时候并不等价。所以选择average pooling。得到1*1*c的向量。

  后面可以接FC,但是为了减少参数,做了降维操作,增加了一个降维的系数r,输出 1*1*C/r

  后接RELU,后面在做一个升维操作,得到1*1*C

  最终使用S函数进行激活。

  

   

  可以看到参数量主要取决与FC,在实验时r一般取16,经验值!

  右图中,是resnet module,改造和inception分支很类似。

  Architectures:

  fc[16,256]表示,r 降维系数是16,会先降到16,然后升到256

  在SE-ResNeXt-50中 (32*4d)中,将3*3卷积变成了group卷积,c取32 

  

  模型cost分析:

  1 ,参数量

  2 , 运算速度

  参数量主要来自于在block内部增加的FC,会增加3%-10%的参数量 ,一般是10%,但是在某些情况下,网络在靠近输出的情况下

  作者把7*7上的FC SE去掉了,得到总参数占3%,但是在TOP5的精度损失不到1%,非常的Cost-effective

  其他的BN,RELU,POOLING 理论的计算量少。但是全连接对比卷积引起的计算量也很少

  

  理论上计算量增加的计算量不到1%

  实际inference GPU 时间增加了10%,分析原因可能是卷积核频繁操作, GPU运算不太友好,大size POOling的问题

  CPU 测试和理论分析值接近。

  训练的情况:

  内部服务器:

  Momenta ROCS

  先对类别进行sample,再对类别内的图片进行sample,可以确保看到每个类别内图片概率的都是相同的

   

  组员在之前场景分类用的小技巧,不是对图像随机采样,而是先对类别进行采样,再在每个特定类别中选去一张图像

  可以保证数据见到的很平衡的,提高训练结果。

  训练超参数:

  任何网络保证每张卡可以处理32张图像,batchsize:1024 / 2048.当batch_size 是2048时候,LR可以调到1 

  实验部分:

  

 

可以看到添加SE以后计算量并没有增加很多。  

   

红色是SE

  

  BN-inception 是一个直线型的网络,没有skip-connection:(想验证是否是只能用在skip-layer中)

  

  

    下图:两个小FC中的第一个,下采样的比例选取规则,50层的网路。在1/32的时候,性能还是有些差异,虽然size小了。

     

 

     下图是实际在参加比赛时,imagenet的结果:

    SE-ResNeXt-152 (64 * 4d)做的改进技巧:

    1:把7*7 拆解成3个3*3连续卷积 (最早在inception中出现)

    2:loss (label_smoothing)

    3: 在训练的最后几个epoch,把BN fix住了,正常情况BN需要一起学习。5-10w次

    因为,BN 只跟batch的数据相关,如果BN和其他W一直变的话很难学到一致的程度,fixBN,就可以保证 最后在训练和测试算出的的均值和方差都是一致的。

    

    

    Excitation的分布结果:

    取得基本都是每个stage最后的layer。在浅层网络学到的比较commen,share FM,在深层以后可以学到spacial

    

    下图有意思的是:

    基本大部分线都是1,都是重合的,激活是饱和状态,个别是0.如果激活所有的值是1的话,其实scale之后没有任何变化,可以认为就是原始的resnet moudle。 换句话说:这个SE模块没有起到任何作用,可以摘除掉

    

    不同类别的激活基本都是相同的,只是浮值变化,这些浮值可以通过分类器的scale进行调节,上层+这层的SE起的作用不大,因为趋势相同,可能会退化成标准网络

    结果把最后一个SE模块摘掉对整体影响不大。

 

  比赛结果:

    

  SE网络在Mob和Shufflenet中进行实验:在mobilenet上有3%的提升在shuffle上2%的提升,size 多一点点。

  

    

  场景分类上的结果:

    加了SE之后发现,显著超过之前的结果:

  

  FAQ

    在不把SEfix的情况下有多大的收益?

    只是竞赛的时候做了fix,追求极致的结果/

     每一个通道求一个权值,逐通道的乘上去,设计方式在性能和精度trade off 

    W*H*C 如何映射到C维向量上?

    map 均值对每个feature map

 

    

转载于:https://www.cnblogs.com/Libo-Master/p/9663508.html

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值