Given positive integers B and N, find an integer A such that AN is as close as possible to B. (The result A is an approximation to the Nth root of B.) Note that AN may be less than, equal to, or greater than B.
Input: The input consists of one or more pairs of values for B and N. Each pair appears on a single line, delimited by a single space. A line specifying the value zero for both B and N marks the end of the input. The value of B will be in the range 1 to 1,000,000 (inclusive), and the value of N will be in the range 1 to 9 (inclusive).
Output: For each pair B and N in the input, output A as defined above on a line by itself.
| Example Input: | Example Output: |
| 4 3 5 3 27 3 750 5 1000 5 2000 5 3000 5 1000000 5 0 0 | 1 2 3 4 4 4 5 1 |


#include <cmath>
using namespace std;
int main(){
double b,n;
while(cin>>b>>n,b!=0 && n!=0){
int a= (int )pow(b,1/n);
if(b-pow(a,n)<pow(a+1,n)-b) cout<<a<<endl;
else cout<<a+1<<endl;
}
return 0;
}
本文介绍了一种通过给定的整数B和N,寻找最接近B的N次方根的整数A的算法。该算法使用C++实现,通过比较A的N次方与B的差距来决定A的值,适用于B范围为1到1,000,000,N范围为1到9的情况。
410

被折叠的 条评论
为什么被折叠?



