#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=110;
const double eps=1e-5;
struct point{
double x,y;
};
point poly[maxn];
bool insidepolygon(point p,int count)
{
int counter=0;
double xinters;
point p1,p2;
p1=poly[0];
for(int i=1;i<=count;i++)
{
p2=poly[i%count];
//printf("p1=(%f,%f),p2=(%f,%f)\n",p1.x,p1.y,p2.x,p2.y);
if(p.y>min(p1.y,p2.y))//过滤掉射线上边的线段
{
if(p.y<=max(p1.y,p2.y))//过滤掉射线下边的线段
{
if(p.x<=max(p1.x,p2.x))//过滤掉射线左边的线段
{
if(p1.y!=p2.y)//过滤水平线段
{
if(p1.x == p2.x)//垂直线段
{
counter++;
}
else
{
double temp;
if( p1.y < p2.y )//
{
temp=(p2.x-p1.x)*(p.y-p1.y)-(p2.y-p1.y)*(p.x-p1.x);
}
else
{
temp=(p1.x-p2.x)*(p.y-p2.y)-(p1.y-p2.y)*(p.x-p2.x);
}
printf("temp=%f\n",temp);
if(temp>0)//点在线段左侧
{
//printf("p1=(%f,%f),p2=(%f,%f)\n",p1.x,p1.y,p2.x,p2.y);
counter++;
}
else if(temp==0)//点在线段上
{
return true;
}
}
}
}
}
}
p1=p2;
}
printf("counter=%d\n",counter);
if(counter%2==0){
return false;
}
return true;
}
int main()
{
point p;
//scanf("%d%d",&n,&q);
double points[11][2]={{0,0},{0,10},{5,8},{10,10},{20,8},{20,5},{15,0},{15,7},{10,7},{10,0},{5,5}};
int num=sizeof(points)/sizeof(points[0]);
for(int i=0;i<num;i++){
//scanf("%lf%lf",&poly[i].x,&poly[i].y);
poly[i].x=points[i][0];
poly[i].y=points[i][1];
printf("%f,%f\n",poly[i].x,poly[i].y);
}
for(int i=0;i<5;i++)
{
scanf("%lf%lf",&p.x,&p.y);
if(insidepolygon(p,num)){
printf("within\n");
}else{
printf("outside\n");
}
}
return 0;
}
检测点在多边形内外算法
点在多边形内判断算法
最新推荐文章于 2023-01-11 10:13:48 发布
1100

被折叠的 条评论
为什么被折叠?



