小球称重问题求解

题目论述:12个长相一样的球中仅有1个球与其他球质量不同,且不确定是重还是轻。请用天枰进行不超过三次的称重,检测出是哪个球与众不同,并且要得出是重还是轻的结论。

 

为叙述方做如下定义。

定义1:与众不同的球为X球,11个相同的球为O球,若与众不同的球比其他11个球重,则为重球,否则为轻球。

定义2:称重中若球AB重,则A>B;若天枰平衡则A=B;表达式中的AB,C。。。等编号直接代表编号为ABC球的质量。

 

称重的方法流程如下:

 

STEP1:任意取出8个球分成两组称重,将球进行编号A+B+C+D vs E+F+G+H

       如果天枰平衡,说明X球在未称重的4个球中,进行STEP2,否则进行STEP3

 

STEP2:由STEP1得出称重的8个球为O球,另四个球编号A,B,C,D。取出一个O球组成如下图组合称重 O+A vs B+C      

       Case1O+A=B+C,说明D球为X球,取出任意O球进行第三次称重 O vs D,若O>DD为轻球,反之为重球。

       Case2O+A>B+C,进行第三次称重 B vs C

 如果B>C :则在B,C中存在轻球,且BO球,C为轻球。

 如果B<C :则在B,C中存在轻球,且B为轻球,CO球。

 如果B=C :则AX球,又因O+A>B+C,则A为重球。

       Case3:  O+A<B+C,进行第三次称重B vs C

              如果B>C:则在B,C中存在重球,且B为重球,CO球。

              如果B<C:则在B,C中存在重球,且BO球,C为重球。

              如果B=C:则AX球,又因O+A<B+C,则A为轻球。

 

STEP3:由STEP1得到8个未定球中有一个特别球,不妨设天枰形态为A+B+C+D>E+F+G+H 

进行第二次测量O+A+E  vs  B+F+G ,即在第一次测量的基础上交换BE,用任一

O球置换C球,天枰两侧各去掉一个DH

       Case1O+A+E = B+F+G,说明在①式中A,B,E,F,G均为O球,①式化简为C+D>O+H。

              进行第三次测量称重C vs D,此情形同STEP2中case3.

              如果C>D:则在C,D中存在重球,且C为重球,D为O球;

              如果C<D:则在C,D中存在重球,且C为O球,D为重球;

              如果C=D:则H为X球,又因C+D>O+H,则H为轻球。

       Case2:O+A+E > B+F+G②,说明STEP3中去掉的C,D,H为O球,且交换过程中无影

响的B和E也为O球,此时②化简为O+A>F+G,第三次称重F vs G。

如果F>G:则在F,G中存在轻球,且F为O球,G为轻球;

如果F<G:则在F,G中存在轻球,且F为轻球,G为O球;

如果F=G:则A为X球,且A为重球。

       Case3:O+A+E < B+F+G,说明交换的B和E中有一个是X球,且B>E。此时用任一O球同B和E中任一一球称重,不妨 O vs B。

              如果O=B,则E为轻球。

              如果O<B,则B为重球。

              不会出现O>B的情况,反之若O>B,则B为轻球,E为O球,矛盾!

 

在称重过程得出两个有用的结论。

结论一:称重中经常会出现一个特定的情形:4个球中有一个是O球,其他3个未知球中有一

个是X球,将四个球任意分成两组,不妨设O+A vs C+D,此时将得到天枰的一个状态,然后

再 次称重 C和D便可得出三个未知球中的所有信息。

结论二:8个球在已知天枰形态的情况下再经过两次称重可以得到所有信息;4个球分成两组

在未知天枰形态下经过2次称重可得到所有球的信息。而所有的情况都可以化为最简单的结论

一的情形。

 

一般情形下的再说吧,太难了。

在C语言中,我们可以使用递归或者循环的方式模拟这个过程。这里以递归为例来展示解决方案: ```c #include <stdio.h> int findLightBall(int balls[], int n, int weighings) { // 第一次称量 if (weighings == 0 || n <= 3) { for (int i = 0; i < n; i++) { if (balls[i] < balls[0]) return i + 1; } return 1; // 假设第一个球是最轻的,因为没有其他选择 } // 分割成三份 int mid = n / 3; int left[3], right[3]; for (int i = 0; i < mid; i++) { left[i] = balls[i]; } for (int i = mid; i < 2 * mid; i++) { right[i - mid] = balls[i]; } // 第二次称量 int lighterSide; if (weigh(left, right, 1)) { // 左边重 lighterSide = 1; } else { // 右边重 lighterSide = 2; } // 第三次称量 int lightBallIndex = findLightBall(weighs[left[mid]], 3, weighings - 1); if (lighterSide == 1) return lightBallIndex + 1; else return lightBallIndex + mid + 1; } // 递归函数,传入已分割的球数组和当前层数 int weighs(int arr[], int n, int depth) { // 实际测量,这里是假定arr[n-1]是最轻的球 if (depth == 0) return 1; // 表示左边较轻 return n % 2 ? 0 : 1; // 假设偶数次称量时右边是轻球 } int main() { int balls[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int n = sizeof(balls) / sizeof(balls[0]); printf("The index of the light ball is: %d\n", findLightBall(balls, n, 3)); return 0; } ``` 这个程序假设每次称重的结果都是随机的,实际上需要替换为实际的比较操作。注意,这是一个简化的例子,实际应用中需要处理更多的边界条件和错误检查。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值