cvBoostNextWeakClassifier(翻译)

原文如下:

/*
 * cvBoostNextWeakClassifier
 *
 * The cvBoostNextWeakClassifier function performs next training
 * iteration and caluclates response values and weights for the next weak
 * classifier training.
 *
 * Parameters
 *   weakEvalVals
 *     Vector of values obtained by evaluation of each sample with
 *     the last trained weak classifier (iteration i). Must be of CV_32FC1 type.
 *   trainClasses
 *     Vector of classes of training samples. Each element must be 0 or 1,
 *     and of type CV_32FC1.
 *   weakTrainVals
 *     Vector of response values for the next weak classifier training
 *     (iteration i+1). Must be of type CV_32FC1.
 *   weights
 *     Weight vector of training samples for the next weak classifier training
 *     (iteration i+1). Must be of type CV_32FC1.
 *   trainer
 *     A pointer to internal trainer returned by the cvBoostStartTraining
 *     function call.
 *
 * Return Values
 *   The return value is the coefficient for the last trained weak classifier.
 *
 * Remarks
 *   weakTrainVals and weights must be exactly the same vectors as used in
 *   the cvBoostStartTraining function call and should not be modified.
 *   The function calculates response values and weights for the next weak
 *   classifier training and stores them into weakTrainVals and weights
 *   respectively.
 *   Note, the training of the weak classifier of iteration i+1 using
 *   weakTrainVals, weight, trainingData is outside of this function.
 */
CV_BOOST_API
float cvBoostNextWeakClassifier( CvMat* weakEvalVals,
                                 CvMat* trainClasses,
                                 CvMat* weakTrainVals,
                                 CvMat* weights,
                                 CvBoostTrainer* trainer );

翻译如下:

/*
 * cvBoostNextWeakClassifier
 *这个函数的作用是为了训练下一个弱分类器,进行下一个迭代训练,计算响应值和权重
 *
 * 参数含义:
 *   weakEvalVals
 *     用上一个迭代训练的弱分类器(第i次迭代)来计算每一个样本的响应值的向量, 必须是 CV_32FC1 的类型
 *   trainClasses
 *     训练样本类的向量  0 or 1,类型必须为 CV_32FC1.
 *   weakTrainVals
 *     下一个弱分类器(第i+1次迭代)所需要的的响应值向量,类型也必须为CV_32FC1.
 *   weights
 *     下一个弱分类器(第i+1次迭代)所需要的的权重向量,类型也必须为CV_32FC1.
 *   trainer
 *     内部trainer的指针,它由cvBoostStartTraining函数回调
 *
 * 返回值
 *   返回值是上一个训练的弱分类器的系数
 *
 * 注:
 *   weakTrainVals and weights 必须与在cvBoostStartTraining函数回调 的向量严格一致,而且不能修改 ;
 *   这个函数计算响应值和权重,并分别存储在 weakTrainVals and weights里,下一个弱分类器的训练需要这两个参数。
 *   注意,第i+1次迭代过程的弱分类器的训练所使用的  weakTrainVals, weight, trainingData 在这个函数之外。
 */
CV_BOOST_API
float cvBoostNextWeakClassifier( CvMat* weakEvalVals,
                                 CvMat* trainClasses,
                                 CvMat* weakTrainVals,
                                 CvMat* weights,
                                 CvBoostTrainer* trainer );



内容概要:本文档详细介绍了Python从下载安装到实际应用的全流程。首先,针对不同操作系统(Windows、macOS、Linux)提供了详细的Python下载与安装指南,并强调了安装时的关键步骤如路径选择和环境变量配置。其次,文档讲解了开发环境的搭建,推荐了VS Code、PyCharm等编辑器以及Anaconda作为环境管理工具。接着,通过代码实例讲解了Python的基础语法,包括数据类型操作等简单实用的例子。最后,通过三个经典案例——排序算法可视化、文件自动化处理、数据可视化(Matplotlib),展示了Python在实际项目中的应用。此外,还提供了一些常见问题的解决方案,帮助初学者避开常见的陷阱。 适合人群:对编程有一定兴趣但缺乏Python经验的新手开发者,尤其是那些希望快速上手并应用于实际项目的学员。 使用场景及目标:①为初次接触Python的学习者提供完整的入门指导;②帮助用户顺利完成Python的安装配置;③通过具体案例让学习者掌握Python的基本语法和常用库的应用;④解决新手在学习过程中可能遇到的问题,提高学习效率。 阅读建议:建议读者按照文档顺序逐步学习,先掌握Python的安装配置,再深入理解基础语法,最后通过实战案例巩固所学知识。对于遇到的问题,可以参考“避坑指南”部分提供的解决方案。同时,在学习过程中应多动手实践,尝试修改示例代码,加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值