LeetCode.1 - two sum

本文深入解析了经典的“两数之和”算法问题,旨在寻找数组中两个数的组合,使其和等于特定目标值。文章详细介绍了算法的实现过程,并提供了一段C语言代码示例,展示了如何通过双层循环遍历数组来找到符合条件的两个元素。

  Given an array of integers, return indices of the two numbers such that they add up to a specific target.

  You may assume that each input would have exactly one solution, and you may not use the same element twice.

  Example:

  Given nums = [2, 7, 11, 15], target = 9,

  Because nums[0] + nums[1] = 2 + 7 = 9,
  return [0, 1].

  C code:

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* twoSum(int* nums, int numsSize, int target) {
    
    int* p;
    int i, j;

    p = malloc(sizeof(int)*2);

    for(i = 0; i < numsSize; i++)
        for(j = 0; j < numsSize; j++)
        {
            if(nums[i] + nums[j] == target && i != j)
            {
                p[0] = j;
                p[1] = i;
                break;
            }
        }

    return p;
}

  Submission Result: Accepted

  题目是说给一个int *twoSum()函数,参数为指向整型数组的指针、数组的大小和一个数据,从数组中找到任意两个数相加起来等于从主函数传来的实参,返回数组中这两个数的下标(note:下标不能相同,必须是两个不同的数相加)。

转载于:https://www.cnblogs.com/darkchii/p/7475746.html

LeetCode 中,two-sum 问题是经典的算法问题之一。使用哈希表解法是其中一种高效且常见的实现方式。该方法的时间复杂度为 O(n),空间复杂度也为 O(n),相较于暴力双重循环的 O(n²) 方法更优。 ### 哈希表解法的核心思想 通过遍历数组,在每次迭代中计算当前元素目标值之间的差值(即 `target - nums[i]`),然后检查该差值是否已经存在于哈希表中。如果存在,则说明找到了满足条件的两个数;如果不存在,则将当前元素及其索引存入哈希表中,以便后续查找。 ### C++ 实现代码 ```cpp class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int, int> hash; // 存储元素的值和下标 int n = nums.size(); for (int i = 0; i < n; ++i) { int x = target - nums[i]; // 寻找对应的另一个加数 if (hash.count(x)) return { hash[x], i }; // 如果找到,直接返回结果 else hash[nums[i]] = i; // 否则,将当前元素存入哈希表 } return { -1, -1 }; // 没有找到符合条件的两个数 } }; ``` ### C 实现代码 另一种实现方式是使用静态分配或动态分配的哈希表结构,例如使用数组模拟哈希表。这种方法在某些特定条件下可能效率更高,尤其是当输入数据范围较小且已知时。 以下是一个优化过的 C 语言实现示例: ```c int* twoSum(int* nums, int numsSize, int target, int* returnSize) { int min = INT_MAX; *returnSize = 2; int i = 0; for (i = 0; i < numsSize; i++) { if (nums[i] < min) min = nums[i]; } int max = target - min; int len = max - min + 1; // 确定哈希表长度 if (len <= 50000) { int *table = (int*)malloc(len * sizeof(int)); int *indice = (int*)malloc(2 * sizeof(int)); for (i = 0; i < len; i++) { table[i] = -1; // 初始化哈希表 } for (i = 0; i < numsSize; i++) { if (nums[i] - min < len) { if (table[target - nums[i] - min] != -1) { indice[0] = table[target - nums[i] - min]; indice[1] = i; return indice; } table[nums[i] - min] = i; } } free(table); return indice; } else { int *a = (int *)malloc(sizeof(int) * 2); for (int i = 0; i < numsSize; i++) { for (int j = 0; j < numsSize; j++) { if (i != j && nums[i] + nums[j] == target) { a[0] = i; a[1] = j; return a; } } } return NULL; } } ``` ### 关键点分析 - **时间复杂度**:O(n),因为每个元素只被处理一次。 - **空间复杂度**:O(n),用于存储哈希表。 - **适用场景**:适用于需要快速查找配对值的问题。 - **注意事项**:确保在查找过程中不会重复使用同一个元素,因此需在哈希表中保存的是之前遍历过的元素[^2]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值