import matplotlib.pyplot as plt
import numpy as np
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
step_size=1e-0
reg=1e-3
num_examples=X.shape[0]
#生成数据
for j in range(K):
ix = range(N*j,N*(j+1))
r = np.linspace(0.0,1,N) # radius
t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
# lets visualize the data:
#plt.scatter(X[:, 0], X[:, 1], c=y, s=10, cmap=plt.cm.Spectral)
#plt.show()
#交叉熵损失函数 计算损失并返回最后一层的梯度
def DataLoss(scores):
exp_scores=np.exp(scores)
probs=exp_scores/np.sum(exp_scores,axis=1,keepdims=True)
correct_logprobs=-np.log(probs[range(num_examples),y])
data_loss=np.sum(correct_logprobs)/num_examples
dscores=probs
dscores[range(num_examples),y]-=1
dscores/=num_examples
return data_loss,dscores
#可视化分类边界
#原理:生成密集的网格数据,利用contourf函数自动生成等高线,即分类边界
def visualize_ans(f):
h=0.02
x_min,x_max=X[:,0].min()-1,X[:,0].max()+1
y_min,y_max=X[:,1].min()-1,X[:,1].max()+1
xx,yy=np.meshgrid(np.arange(x_min,x_max,h),np.arange(y_min,y_max,h)) #生成网格数据
Z=f(xx,yy)
Z=np.argmax(Z,axis=1)
Z=Z.reshape(xx.shape)
fig=plt.figure()
plt.contourf(xx,yy,Z,cmap=plt.cm.Spectral,alpha=0.8) #自动生成等高线
plt.scatter(X[:,0],X[:,1],c=y,s=10,cmap=plt.cm.Spectral)
plt.xlim(x_min,x_max)
plt.ylim(y_min,y_max)
plt.show()
def linear_classifier():
W=0.01*np.random.randn(D,K)
b=np.zeros((1,K))
for i in range(200):
scores=np.dot(X,W)+b
data_loss,dscores=DataLoss(scores)
reg_loss=0.5*reg*np.sum(W*W)
loss=data_loss+reg_loss
if i % 10 == 0:
print ("iteration %d: loss %f" % (i, loss))
dW=np.dot(X.T,dscores)+reg*W
db=np.sum(dscores,axis=0,keepdims=True)
W+=-step_size*dW
b+=-step_size*db
scores=np.dot(X,W)+b
predicted_class=np.argmax(scores,axis=1)
print('training accuracy:%.2f' % (np.mean(predicted_class==y)))
visualize_ans(lambda xx,yy:np.dot(np.c_[xx.ravel(),yy.ravel()],W)+b)
def nn_classifier():
h=100
W=0.01*np.random.randn(D,h)
b=np.zeros((1,h))
W2=0.01*np.random.randn(h,K)
b2=np.zeros((1,K))
for i in range(10000):
hidden_layer = np.maximum(0, np.dot(X, W) + b) # ReLU activation
scores = np.dot(hidden_layer, W2) + b2
data_loss ,dscores= DataLoss(scores)
reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2)
loss = data_loss + reg_loss
if i % 1000 == 0:
print ("iteration %d: loss %f" % (i, loss))
dW2 = np.dot(hidden_layer.T, dscores)
db2 = np.sum(dscores, axis=0, keepdims=True)
dhidden = np.dot(dscores, W2.T)
dhidden[hidden_layer <= 0] = 0
dW = np.dot(X.T, dhidden)
db = np.sum(dhidden, axis=0, keepdims=True)
dW2 += reg * W2
dW += reg * W
W += -step_size * dW
b += -step_size * db
W2 += -step_size * dW2
b2 += -step_size * db2
hidden_layer=np.maximum(0,np.dot(X,W)+b)
scores=np.dot(hidden_layer,W2)+b2
predicted_class=np.argmax(scores,axis=1)
if i % 1000 == 0:
print ("iteration %d: loss %f" % (i, loss))
visualize_ans(lambda xx,yy:np.dot(np.maximum(0,np.dot(np.c_[xx.ravel(),yy.ravel()],W)+b),W2)+b2)
if __name__ == '__main__':
nn_classifier()