opencv-python 图像基础处理(三)

腐蚀操作

#腐蚀操作
import  cv2
import numpy as  np
img=cv2.imread("d:/ke.png")
kernel = np.ones((3,3),np.uint8)
erosion = cv2.erode(img,kernel,iterations = 1)#腐蚀操作 iterations控制腐蚀程度
erosion1 = cv2.erode(img,kernel,iterations = 2)
erosion2 = cv2.erode(img,kernel,iterations = 3)
res=np.hstack((img,erosion,erosion1,erosion2))
cv2.imshow('erosion', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 膨胀操作

import  cv2
import numpy as np
img=cv2.imread("d:/ke.png")
kernel=np.ones((3,3),np.uint8)
img_diate=cv2.dilate(img,kernel,iterations=1) #膨胀操作
img_diate1=cv2.dilate(img,kernel,iterations=2)
img_diate2=cv2.dilate(img,kernel,iterations=3)
res=np.hstack((img_diate,img_diate1,img_diate2)) #水平展示
cv2.imshow("ditae",res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 开闭运算

import  cv2
import  numpy as np
img=cv2.imread("d:/ke.png")
kernel=np.ones((3,3),np.uint8)
open=cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)#开运算:先腐蚀,后膨胀
close=cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)#关运算:先膨胀,后腐蚀
res=np.hstack((open,close))
cv2.imshow("kai vs close",res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 梯度运算

#梯度运算
import  cv2
import  numpy as np
img=cv2.imread("d:/ke.png")
kernel=np.ones((3,3),np.uint8)
dilate=cv2.dilate(img,kernel,iterations=3) #膨胀
erosion=cv2.erode(img,kernel,iterations=3) #腐蚀
gradient=cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel) #梯度
res=np.hstack((dilate,erosion,gradient))
cv2.imshow("show",res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 礼帽与黑帽

礼帽 = 原始输入-开运算结果

黑帽 = 闭运算-原始输入

import cv2
import numpy as  np
img=cv2.imread("d:/ke.png")
kernel=np.ones((3,3),np.uint8)
tophar=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel) #礼帽
blackhar=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel) #黑帽
res=np.hstack((tophar,blackhar))
cv2.imshow("hat",res)
cv2.waitKey(0)
cv2.destoryAllWindows()

 

转载于:https://www.cnblogs.com/xujunjia/p/11442441.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值