TensorFlow Object Detection API(Windows下测试)

本文详细介绍TensorFlow目标检测API的安装配置与运行流程,对比SSD等神经网络,适用于计算机视觉领域的多对象识别与定位任务。
部署运行你感兴趣的模型镜像
"Speed/accuracy trade-offs for modern convolutional object detectors."
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
Song Y, Guadarrama S, Murphy K, CVPR 2017
————————————————————————————————————
本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃
 
    这个API的目的是创建一个能够在单个图像中定位和识别多个对象的精确机器学习模型,这在仍然是计算机视觉领域仍然是一个核心挑战。该API是在tensorflow上构造的开源框架,易于构建、训练和部署目标检测模型,谷歌已经应用在公司的视觉项目中,来源是开头的那篇论文,如果有兴趣可以研究一下,主要对比了几种不同的Object Detection神经网络(FasterRCNN RFCN SSD)。
一、安装(链接为GitHub上给出的安装说明):
    1、依赖:
Protobuf 2.6
Pillow 1.0
lxml
tf Slim (which is included in the "tensorflow/models" checkout)
Jupyter notebook
Matplotlib
Tensorflow
    2、关于Protobuf:
        Protocol-buffer,Google开发的一套数据存储、网络通信时用于协议编码的工具库,和XML或json类似,就是把数据以某种结构保存下来,不同之处在于protobuf是二进制的,而且编码的时间和空间开销都降低很多。原理可以参考博客:majianfei1023
        使用方法:在Google的git仓库下载需要的版本:根据前文依赖需要的是Protobuf 2.6,我们只需要它的编解码功能,所以只需要下载win32版本即可。下载解压发现是一个可执行文件,OK,把它加入环境变量:在path中添加exe文件路径,并新建一个proto_path,路径为exe文件路径。调用cmd,输入protoc发现提示missing input file,证明已经可以使用了。
        
        参照GitHub上给出的installation提示,在tensorflow/models/目录下输入命令:
        protoc object_detection/protos/*.proto --python_out=.
        
        可以看到object_detection/protos/目录下的所有*.proto都生成了对应的py文件。
    3、添加环境变量PYTHONPATH
      PYTHONPATH  G:\TensorFlow\models\slim;G:\TensorFlow\models\slim
    4、测试是否成功
    (涂抹两个路径,防止给大家添加环境变量造成歧义,这里我用的是anaconda的虚拟环境)
 
二、运行官方的检测demo
    打开object_detection目录下的object_detection_tutorial.ipynb,直接运行到最后,两个demo图片,分别是两只狗和海边的风筝,也可以自己修改需要检测的图片,修改PATH_TO_TEST_IMAGES_DIR图片路径,或者直接把你要检测图片拷贝到这个test_images路径下,需要修改图片名。
 
三、和SSD对比
    SSD
 
Object Detection API
 

(图片来自百度图片,如有侵权请告知删除)

四、训练数据集
挖个坑,慢慢填……
填坑:http://www.cnblogs.com/mar-q/p/7579263.html

转载于:https://www.cnblogs.com/mar-q/p/7459845.html

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

Delphi 12.3 作为一款面向 Windows 平台的集成开发环境,由 Embarcadero Technologies 负责其持续演进。该环境以 Object Pascal 语言为核心,并依托 Visual Component Library(VCL)框架,广泛应用于各类桌面软件、数据库系统及企业级解决方案的开发。在此生态中,Excel4Delphi 作为一个重要的社区开源项目,致力于搭建 Delphi 与 Microsoft Excel 之间的高效桥梁,使开发者能够在自研程序中直接调用 Excel 的文档处理、工作表管理、单元格操作及宏执行等功能。 该项目以库文件与组件包的形式提供,开发者将其集成至 Delphi 工程后,即可通过封装良好的接口实现对 Excel 的编程控制。具体功能涵盖创建与编辑工作簿、格式化单元格、批量导入导出数据,乃至执行内置公式与宏指令等高级操作。这一机制显著降低了在财务分析、报表自动生成、数据整理等场景中实现 Excel 功能集成的技术门槛,使开发者无需深入掌握 COM 编程或 Excel 底层 API 即可完成复杂任务。 使用 Excel4Delphi 需具备基础的 Delphi 编程知识,并对 Excel 对象模型有一定理解。实践中需注意不同 Excel 版本间的兼容性,并严格遵循项目文档进行环境配置与依赖部署。此外,操作过程中应遵循文件访问的最佳实践,例如确保目标文件未被独占锁定,并实施完整的异常处理机制,以防数据损毁或程序意外中断。 该项目的持续维护依赖于 Delphi 开发者社区的集体贡献,通过定期更新以适配新版开发环境与 Office 套件,并修复已发现的问题。对于需要深度融合 Excel 功能的 Delphi 应用而言,Excel4Delphi 提供了经过充分测试的可靠代码基础,使开发团队能更专注于业务逻辑与用户体验的优化,从而提升整体开发效率与软件质量。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值