@浙大疏锦行
# 创建一个2*2的随机数组c,区间为[0,1)
c = np.random.rand(2, 2)
c

import numpy as np
np.random.seed(42) # 设置随机种子以确保结果可重复
# 生成10个语文成绩(正态分布,均值75,标准差10)
chinese_scores = np.random.normal(75, 10, 10).round(1)
# 找出最高分和最低分及其索引
max_score = np.max(chinese_scores)
max_index = np.argmax(chinese_scores)
min_score = np.min(chinese_scores)
min_index = np.argmin(chinese_scores)
print(f"所有成绩: {chinese_scores}")
print(f"最高分: {max_score} (第{max_index}个学生)")
print(f"最低分: {min_score} (第{min_index}个学生)")

import numpy as np
scores = np.array([5, 9, 9, 11, 11, 13, 15, 19])
scores += 1 # 学习一下这个写法,等价于 scores = scores + 1
sum = 0
for i in scores: # 遍历数组中的每个元素
sum += i
print(sum)
import numpy as np
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([[7, 8], [9, 10], [11, 12]])
print(a)
print(b)
# 数组:
arr2d = np.array([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16]])
arr2d
# 取出第 1 行 (索引为 1) 的所有元素。
#
# 使用索引 arr[row_index, :] 或 arr[row_index]
arr2d[1, :]
# 也可以省略后面的 :
arr2d[1]
# 取出第 2 列 (索引为 2) 的所有元素。
# 使用索引 arr[:, column_index]
arr2d[:, 2]
# 取出位于第 2 行 (索引 2)、第 3 列 (索引 3) 的元素。
# 使用 arr[row_index, column_index]
arr2d[2, 3]
# 取出由第 0 行和第 2 行组成的新数组。
# 使用整数数组作为行索引 arr[[row1, row2, ...], :]
arr2d[[0, 2], :]
# 取出由第 1 列和第 3 列组成的新数组。
# 使用整数数组作为列索引 arr[:, [col1, col2, ...]]
arr2d[:, [1, 3]]
# 取出一个 2x2 的子矩阵,包含元素 6, 7, 10, 11。
# 使用切片 slice arr[row_start:row_stop, col_start:col_stop]
arr2d[1:3, 1:3]
arr3d = np.arange(3 * 4 * 5).reshape((3, 4, 5))
arr3d
# 选择特定的层
# 使用整数数组 [0, 2] 作为第一个维度 (层) 的索引
arr3d[1, :, :]
# 先运行之前预处理好的代码
import pandas as pd
import pandas as pd #用于数据处理和分析,可处理表格数据。
import numpy as np #用于数值计算,提供了高效的数组操作。
import matplotlib.pyplot as plt #用于绘制各种类型的图表
import seaborn as sns #基于matplotlib的高级绘图库,能绘制更美观的统计图形。
import warnings
warnings.filterwarnings("ignore")
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_csv('data.csv') #读取数据
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv("data.csv") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
# 最开始也说了 很多调参函数自带交叉验证,甚至是必选的参数,你如果想要不交叉反而实现起来会麻烦很多
# 所以这里我们还是只划分一次数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))

import shap
import matplotlib.pyplot as plt
# 初始化 SHAP 解释器
explainer = shap.TreeExplainer(rf_model)
# 计算 SHAP 值(基于测试集),这个shap_values是一个numpy数组,表示每个特征对每个样本的贡献值
shap_values = explainer.shap_values(X_test) # 这个计算耗时
shap_values

shap_values[0,:,:]

# 三个维度
# 第一个维度是样本数
# 第二个维度是特征数
# 第三个维度是类别数
shap_values.shape

# 比如我想取出所有样本对第一个类别的贡献值
shap_values[:,:,0]
