Why the Place that Jang'S Equation Blow Up is Apparent Horiozn?

  • Why the Place that Jang'S Equation Blow Up is Apparent Horiozn?

    Let's consider a simple example:
    Let us assume that the three metric is \[ds^2=g_{rr}dr^2+R^2(r)d\Omega\]
    extrinsic curvature is \[K^{ab}=n^an^bK_L+(g^{ab}-n^an^b)K_R\]
    where \(K_L\) and \(K_R\) are two scalar and \(n^a\) is the outward pointing unit normal to the surface of constant \(R\).
    The Spherical symmetry Jang's equation is
    \[ \begin{equation} \frac{\sqrt{g^{rr}}}{R^2}( \frac{R^2 f_r\sqrt{g^{rr}}}{\sqrt{1+f_r^2 g^{rr}}})_{,r} +(2K_R+K_L)-K_L\frac{f_r^2 g^{rr}}{1+f_r^2 g^{rr}}=0 \end{equation} \]
    The Apparent Horizon condition(expansion equation) is
    \[ \begin{equation} \boxed{ \sqrt{g^{rr}}R_{,r}+RK_R=0} \end{equation} \]
    If Jang's equation blow up, \(\Longleftrightarrow\)
    \[ \begin{equation} \displaystyle \frac{f_r\sqrt{g^{rr}}}{\sqrt{1+f_r^2 g^{rr}}}=1,\text{at the Apparent Horiozn} \end{equation} \]
    ,then Jang's equation reduce to
    \[ \begin{align} \frac{\sqrt{g^{rr}}}{R^2}( R^2)_{,r}+2K_R &=0\\ \Longrightarrow \sqrt{g^{rr}} R_{,r}+RK_{R} &=0 \end{align} \]

转载于:https://www.cnblogs.com/yuewen-chen/p/11542732.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值