D. Vasya And The Matrix(Educational Codeforces Round 48)

本文探讨了如何帮助Vasya解决数学考试中的一道难题:寻找满足特定约束条件的矩阵,包括行与列的异或值。文章提供了一种算法解决方案,通过构造一个特定的矩阵来满足题目要求。

D. Vasya And The Matrix
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Now Vasya is taking an exam in mathematics. In order to get a good mark, Vasya needs to guess the matrix that the teacher has constructed!

Vasya knows that the matrix consists of n rows and m columns. For each row, he knows the xor (bitwise excluding or) of the elements in this row. The sequence a1, a2, ..., an denotes the xor of elements in rows with indices 1, 2, ..., n, respectively. Similarly, for each column, he knows the xor of the elements in this column. The sequence b1, b2, ..., bm denotes the xor of elements in columns with indices 1, 2, ..., m, respectively.

Help Vasya! Find a matrix satisfying the given constraints or tell him that there is no suitable matrix.

Input
The first line contains two numbers n and m (2 ≤ n, m ≤ 100) — the dimensions of the matrix.

The second line contains n numbers a1, a2, ..., an (0 ≤ ai ≤ 109), where ai is the xor of all elements in row i.

The third line contains m numbers b1, b2, ..., bm (0 ≤ bi ≤ 109), where bi is the xor of all elements in column i.

Output
If there is no matrix satisfying the given constraints in the first line, output "NO".

Otherwise, on the first line output "YES", and then n rows of m numbers in each ci1, ci2, ... , cim (0 ≤ cij ≤ 2·109) — the description of the matrix.

If there are several suitable matrices, it is allowed to print any of them.

直接构造一个任意的(n-1)*(m-1)的0矩阵,最后一个值异或得到

#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
using namespace std;
#define ll long long
int main(int argc, char const *argv[])
{
    int n, m;
    int r, c;
    int a[105], b[105];

    cin >> n >> m;

    r = c = 0;

    for (int i = 0; i < n; i++) {
        cin >> a[i];
        r ^= a[i];
    }
    for (int i = 0; i < m; i++) {
        cin >> b[i];
        c ^= b[i];
    }
    if (r != c) {
        puts("NO");
    } else {
        bool first;
        puts("YES");
        for (int i = 0; i < n; i++) {
            first = true;
            for (int j = 0; j < m; j++) {
                if (!first) printf(" ");
                else first = false;
                if (i != n-1 && j != m-1) {
                    printf("0");
                } else if (j == m-1 && i == n-1) {
                    r = 0;
                    for (int k = 0; k < m-1; k++) r ^= b[k];
                    r ^= a[n-1];
                    printf("%d", r);
                } else if (j == m-1){
                    printf("%d", a[i]);
                } else {
                    printf("%d", b[j]);
                }
            }
            printf("\n");
        }
    }

    return 0;
}

转载于:https://www.cnblogs.com/huangjiaming/p/9420472.html

### Codeforces Round 260 Div. 1 题目及题解 #### A. Vasya and Multisets 在这道题目中,Vasya有一个由n个整数组成的序列。目标是通过将这些数分成若干组,使得每组中的所有数都相同,并且尽可能减少分组的数量。 为了实现这一目的,可以利用贪心算法来解决这个问题。具体来说,在遍历输入数据的同时维护当前最大频率计数器,对于每一个新遇到的不同数值增加一个新的集合[^1]。 ```cpp #include <bits/stdc++..h> using namespace std; void solve() { int n; cin >> n; unordered_map<int, int> freq; for (int i = 0; i < n; ++i) { int x; cin >> x; freq[x]++; } int maxFreq = 0; for (auto& p : freq) { maxFreq = max(maxFreq, p.second); } cout << maxFreq << "\n"; } ``` #### B. Pashmak and Graph 此问题涉及图论领域的一个经典最短路径计算案例。给定一张带权无向图以及起点S和终点T,要求求出从S到T经过至少一条边后的最小花费总和。 Dijkstra算法适用于此类场景下的单源最短路径查询任务。初始化距离表dist[]为无穷大(INF),仅设置起始节点的距离为零;随后借助优先队列选取未访问过的最近邻接顶点u更新其相邻结点v至目前为止所知的最佳到达成本min{dist[u]+w(u,v)}直至找到终止条件即抵达目的地t或处理完毕所有可达区域内的候选者为止。 ```cpp typedef pair<long long,int> pli; const long long INF = LLONG_MAX / 3; struct Edge { int to, cost; }; vector<Edge> G[MAX_V]; long long d[MAX_V]; bool dijkstra(int s, int t){ priority_queue<pli,vector<pl>,greater<pl>> que; fill(d,d+MAX_V,INF); d[s]=0; que.push(pli(0,s)); while(!que.empty()){ pli p=que.top();que.pop(); int v=p.second; if(d[v]<p.first) continue; for(auto e:G[v]){ if(d[e.to]>d[v]+e.cost){ d[e.to]=d[v]+e.cost; que.push(pli(d[e.to],e.to)); } } } return d[t]!=INF; } ``` #### C. DZY Loves Colors 这是一道关于颜色染色的问题。给出长度为N的一维网格,初始状态下每个格子都有一个默认的颜色编号。现在有M次操作机会改变某些位置上的色彩值,最终目的是统计整个条带上共有几种不同的色调存在。 采用离散化技术预处理原始输入并记录下各段连续同色区间的端点坐标范围,之后针对每一次修改请求动态调整受影响部分的信息结构体(如线段树),最后依据累积的结果得出答案。 ```cpp // 假设已经实现了上述提到的数据结构 SegmentTree 和 update 函数 SegmentTree st; for(int i=1;i<=m;++i){ int l,r,c; scanf("%d%d%d",&l,&r,&c); update(l,r,c); } printf("%lld\n",st.query()); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值