说说GAN(生成式对抗网络)

Auto-encoder中,input data通过一个encoder神经网络得到一个维度的较低的向量,称这个向量为code,code经过一个decoder神经网络后输出一个output data。
encoder 网络的作用是用来发现给定数据的压缩表示。decoder网络使原始输入的尽可能地相同的重建的表示。在训练时,decoder 强迫 auto-encoder选择最有信息量的特征,最终保存在code中。重建的输入越靠近原始输入,最终得到的表示越好。
通过得到的encoder和decoder可以做很多事情。例如,可以通过encoder网络来对原始数据降维和自动抽取特征。我们也可以随机生成的很多code(低维向量)经过decoder网络来得到很多随机生成的数据。如图:
724315-20170613205419493-151062805.png
对于生成数据这个任务来说,比Auto-encoder更擅长的是VAE(Variational Auto-Encoding ),VAE在Auto-encoder框架加入了噪声影响,同时加入了类似正则的约束。但是VAE存在的问题是VAE并不是真正的生成数据,而是生成一个和和训练样本最接近的数据。例如在训练过程中:
724315-20170613211707665-401959975.png output1:724315-20170613211743571-1032986005.pngoutput2:724315-20170613211810821-167199379.png
由于output1和output2都只变化了一个像素,VAE会认为output1和output2的损失是一样的,但实际上output1比output2更像7。

GAN(Generative Adversarial Net)

GAN中有一个generator和discriminator。discriminator负责判断是真实数据还是生成的数据,generator负责生成数据它的目标是生成的数据能够骗过discriminator。
724315-20170613215144243-166626049.png
generator和discriminator是一种竞争和对抗的关系。
极小极大博弈问题:
\[\underset{G}{min} \: \underset{D}{max}V(D,G) =E_{x\sim p_{data}(x)}[logD(x)]+E_{z\sim p_{z}(z)}[log(1-D(G(z)))]\]
GAN的算法流程:
724315-20170613215855650-481813136.png
交替更新discriminator和generator,最终当\(P_{g}\)收敛到真实分布\(P_{data}\)时,达到均衡。
理论推导可以参考这里

转载于:https://www.cnblogs.com/sandy-t/p/7070146.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值