声明式API
我们来探讨下,当我把一个 YAML 文件提交给 Kubernetes 之后,它究竟是如何创建出一个 API 对象的呢。
在 Kubernetes 项目中,一个 API 对象在 Etcd 里的完整资源路径,是由:
Group(API 组)、Version(API 版本)和Resource(API 资源类型)三个部分组成的。
通过这样的结构,整个 Kubernetes 里的所有 API 对象,实际上就可以用如下的树形结构表示出来:

比如,现在我要声明要创建一个 CronJob 对象,那么我的 YAML 文件的开始部分会这么写:
apiVersion: batch/v2alpha1
kind: CronJob
...
在这个 YAML 文件中,“CronJob”就是这个 API 对象的资源类型(Resource),“batch”就是它的组(Group),v2alpha1 就是它的版本(Version)。
当我们提交了这个 YAML 文件之后,Kubernetes 就会把这个 YAML 文件里描述的内容,转换成 Kubernetes 里的一个 CronJob 对象。
找到API对象
那么,Kubernetes 是如何对 Resource、Group 和 Version 进行解析,从而在 Kubernetes 项目里找到 CronJob 对象的定义呢?
匹配 API 对象的组
需要明确的是,对于 Kubernetes 里的核心 API 对象,比如:Pod、Node 等,是不需要 Group 的(即:它们的 Group 是“”)。所以,对于这些 API 对象来说,Kubernetes 会直接在 /api 这个层级进行下一步的匹配过程。
而对于 CronJob 等非核心 API 对象来说,Kubernetes 就必须在 /apis 这个层级里查找它对应的 Group,进而根据“batch”这个 Group 的名字,找到 /apis/batch。
匹配到 API 对象的版本号
对于 CronJob 这个 API 对象来说,Kubernetes 在 batch 这个 Group 下,匹配到的版本号就是v2alpha1。
在 Kubernetes 中,同一种 API 对象可以有多个版本,这正是 Kubernetes 进行 API 版本化管理的重要手段。这样,比如在 CronJob 的开发过程中,对于会影响到用户的变更就可以通过升级新版本来处理,从而保证了向后兼容。
Kubernetes 会匹配 API 对象的资源类型
在前面匹配到正确的版本之后,Kubernetes 就知道,我要创建的原来是一个 /apis/batch/v2alpha1 下的 CronJob 对象。
整体流程
为了方便理解,我为你总结了一个如下所示流程图来阐述一个API对象的创建过程(上一步骤的CronJob):

1,首先,当我们发起了创建 CronJob 的 POST 请求之后,我们编写的 YAML 的信息就被提交给了 APIServer。
而 APIServer 的第一个功能,就是过滤这个请求,并完成一些前置性的工作,比如授权、超时处理、审计等。
2,然后,请求会进入 MUX 和 Routes 流程。如果你编写过 Web Server 的话就会知道,MUX 和 Routes 是 APIServer 完成 URL 和 Handler 绑定的场所。而 APIServer 的 Handler 要做的事情,就是按照我刚刚介绍的匹配过程,找到对应的 CronJob 类型定义。
3,APIServer 最重要的职责就来了:根据这个 CronJob 类型定义,使用用户提交的 YAML 文件里的字段,创建一个 CronJob 对象。
而在这个过程中,APIServer 会进行一个 Convert 工作,即:把用户提交的 YAML 文件,转换成一个叫作 Super Version 的对象,它正是该 API 资源类型所有版本的字段全集。这样用户提交的不同版本的 YAML 文件,就都可以用这个 Super Version 对象来进行处理了。
4,APIServer 会先后进行 Admission() 和 Validation() 操作。比如, Admission Controller 和 Initializer,就都属于 Admission 的内容。
而 Validation,则负责验证这个对象里的各个字段是否合法。这个被验证过的 API 对象,都保存在了 APIServer 里一个叫作 Registry 的数据结构中。也就是说,只要一个 API 对象的定义能在 Registry 里查到,它就是一个有效的 Kubernetes API 对象。
5,APIServer 会把验证过的 API 对象转换成用户最初提交的版本,进行序列化操作,并调用 Etcd 的 API 把它保存起来。
由此可见,
声明式 API对于 Kubernetes 来说非常重要。所以,APIServer 成了 Kubernetes 项目的重中之重。它不仅是 Google Borg 设计思想的集中体现。
CRD
在过去很长一段时间里,在这样一个极其“复杂”的 APIServer 中,添加一个 Kubernetes 风格的 API 资源类型,是一个非常困难的工作。
不过,在 Kubernetes v1.7 之后,这个工作就变得轻松得多了。这,当然得益于一个全新的 API 插件机制:CRD。
CRD 的全称是 Custom Resource Definition。顾名思义,它指的就是,允许用户在 Kubernetes 中添加一个跟 Pod、Node 类似的、新的 API 资源类型,即:自定义 API 资源。
自定义 API 资源
举个例子,我现在要为 Kubernetes 添加一个名叫 Network 的 API 资源类型。
它的作用是,一旦用户创建一个 Network 对象,那么 Kubernetes 就应该使用这个对象定义的网络参数,调用真实的网络插件,比如 Neutron 项目,为用户创建一个真正的“网络”。这样,将来用户创建的 Pod,就可以声明使用这个“网络”了。
这个 Network 对象的 YAML 文件,名叫 example-network.yaml,它的内容如下所示:
apiVersion: samplecrd.k8s.io/v1
kind: Network
metadata:
name: example-network
spec:
cidr: "192.168.0.0/16"
gateway: "192.168.0.1"
可以看到,我想要描述“网络”的 API 资源类型是 Network;API 组是samplecrd.k8s.io;API 版本是 v1。
其实,上面的这个 YAML 文件,就是一个具体的“自定义 API 资源”实例,也叫 CR(Custom Resource)。而为了能够让 Kubernetes 认识这个 CR,你就需要让 Kubernetes 明白这个 CR 的宏观定义是什么,也就是 CRD(Custom Resource Definition)。
所以,接下来,我就先编写一个 CRD 的 YAML 文件,它的名字叫作 network.yaml,内容如下所示:
apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
name: networks.samplecrd.k8s.io
spec:
group: samplecrd.k8s.io
version: v1
names:
kind: Network
plural: networks
scope: Namespaced
可以看到,在这个 CRD 中,我指定了“group: samplecrd.k8s.io”“version: v1”这样的 API 信息,也指定了这个 CR 的资源类型叫作 Network,复数(plural)是 networks。
然后,我还声明了它的 scope 是 Namespaced,即:我们定义的这个 Network 是一个属于 Namespace 的对象,类似于 Pod。这就是一个 Network API 资源类型的 API 部分的宏观定义了。
接下来,我还需要让 Kubernetes“认识”这种 YAML 文件里描述的“网络”部分,比如“cidr”(网段),“gateway”(网关)这些字段的含义。可以认为是具体实现了。
字段定义
接下来,我就需要稍微做些代码工作了。
首先,我要在 GOPATH 下,创建一个结构如下的项目:
$ tree $GOPATH/src/github.com/<your-name>/k8s-controller-custom-resource
.
├── controller.go
├── crd
│ └── network.yaml
├── example
│ └── example-network.yaml
├── main.go
└── pkg
└── apis
└── samplecrd
├── register.go
└── v1
├── doc.go
├── register.go
└── types.go
其中,pkg/apis/samplecrd 就是 API 组的名字,v1 是版本,而 v1 下面的 types.go 文件里,则定义了 Network 对象的完整描述。
然后,我在 pkg/apis/samplecrd 目录下创建了一个 register.go 文件,用来放置后面要用到的全局变量。这个文件的内容如下所示:
package samplecrd
const (
GroupName = "samplecrd.k8s.io"
Version = "v1"
)
接着,我需要在 pkg/apis/samplecrd 目录下添加一个 doc.go 文件(Golang 的文档源文件)。这个文件里的内容如下所示:
// +k8s:deepcopy-gen=package
// +groupName=samplecrd.k8s.io
package v1
在这个文件中,你会看到 +<tag_name>[=value]格式的注释,这就是 Kubernetes 进行代码生成要用的 Annotation 风格的注释。
其中,+k8s:deepcopy-gen=package 意思是,请为整个 v1 包里的所有类型定义自动生成 DeepCopy 方法;而+groupName=samplecrd.k8s.io,则定义了这个包对应的 API 组的名字。
可以看到,这些定义在 doc.go 文件的注释,起到的是全局的代码生成控制的作用,所以也被称为 Global Tags。
接下来,我需要添加 types.go 文件。顾名思义,它的作用就是定义一个 Network 类型到底有哪些字段(比如,spec 字段里的内容)。这个文件的主要内容如下所示:
package v1
...
// +genclient
// +genclient:noStatus
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// Network describes a Network resource
type Network struct {
// TypeMeta is the metadata for the resource, like kind and apiversion
metav1.TypeMeta `json:",inline"`
// ObjectMeta contains the metadata for the particular object, including
// things like...
// - name
// - namespace
// - self link
// - labels
// - ... etc ...
metav1.ObjectMeta `json:"metadata,omitempty"`
Spec networkspec `json:"spec"`
}
// networkspec is the spec for a Network resource
type networkspec struct {
Cidr string `json:"cidr"`
Gateway string `json:"gateway"`
}
// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object
// NetworkList is a list of Network resources
type NetworkList struct {
metav1.TypeMeta `json:",inline"`
metav1.ListMeta `json:"metadata"`
Items []Network `json:"items"`
}
在上面这部分代码里,你可以看到Network 类型定义方法跟标准的 Kubernetes 对象一样,都包括了 TypeMeta(API 元数据)和 ObjectMeta(对象元数据)字段。
而其中的 Spec 字段,就是需要我们自己定义的部分。所以,在 networkspec 里,我定义了 Cidr 和 Gateway 两个字段。其中,每个字段最后面的部分比如json:"cidr",指的就是这个字段被转换成 JSON 格式之后的名字,也就是 YAML 文件里的字段名字。
此外,除了定义
Network类型,你还需要定义一个NetworkList类型,用来描述一组Network对象应该包括哪些字段。之所以需要这样一个类型,是因为在 Kubernetes 中,获取所有 X 对象的 List() 方法,返回值都是List 类型,而不是 X 类型的数组。这是不一样的。
其中,+genclient 的意思是:请为下面这个 API 资源类型生成对应的 Client 代码(这个 Client,我马上会讲到)。而 +genclient:noStatus 的意思是:这个 API 资源类型定义里,没有 Status 字段。否则,生成的 Client 就会自动带上 UpdateStatus 方法
如果你的类型定义包括了 Status 字段的话,就不需要这句 +genclient:noStatus 注释了。比如下面这个例子:
// +genclient
// Network is a specification for a Network resource
type Network struct {
metav1.TypeMeta `json:",inline"`
metav1.ObjectMeta `json:"metadata,omitempty"`
Spec NetworkSpec `json:"spec"`
Status NetworkStatus `json:"status"`
}
需要注意的是,+genclient 只需要写在 Network 类型上,而不用写在 NetworkList 上。因为 NetworkList 只是一个返回值类型,Network 才是“主类型”。
而由于我在 Global Tags 里已经定义了为所有类型生成 DeepCopy 方法,所以这里就不需要再显式地加上 +k8s:deepcopy-gen=true 了。当然,这也就意味着你可以用 +k8s:deepcopy-gen=false 来阻止为某些类型生成 DeepCopy。
最后,我需要再编写一个 pkg/apis/samplecrd/v1/register.go 文件。
在前面对 APIServer 工作原理的讲解中,我已经提到,“registry”的作用就是注册一个类型(Type)给 APIServer。其中,Network 资源类型在服务器端注册的工作,APIServer 会自动帮我们完成。但与之对应的,我们还需要让客户端也能“知道”Network 资源类型的定义。这就需要我们在项目里添加一个 register.go 文件。它最主要的功能,就是定义了如下所示的 addKnownTypes() `方法:
package v1
...
// addKnownTypes adds our types to the API scheme by registering
// Network and NetworkList
func addKnownTypes(scheme *runtime.Scheme) error {
scheme.AddKnownTypes(
SchemeGroupVersion,
&Network{},
&NetworkList{},
)
// register the type in the scheme
metav1.AddToGroupVersion(scheme, SchemeGroupVersion)
return nil
}
有了这个方法,Kubernetes 就能够在后面生成客户端的时候,“知道”Network 以及 NetworkList 类型的定义了。
像上面这种register.go 文件里的内容其实是非常固定的,你以后可以直接使用我提供的这部分代码做模板,然后把其中的资源类型、GroupName 和 Version 替换成你自己的定义即可。
这样,Network 对象的定义工作就全部完成了。可以看到,它其实定义了两部分内容:
第一部分是,自定义资源类型的 API 描述,包括:
组(Group)、版本(Version)、资源类型(Resource)等。
第二部分是,自定义资源类型的对象描述,包括:
Spec、Status等。这相当于告诉了计算机:兔子有长耳朵和三瓣嘴。
接下来,我就要使用 Kubernetes 提供的代码生成工具,为上面定义的 Network 资源类型自动生成 clientset、informer和 lister。其中,clientset 就是操作 Network 对象所需要使用的客户端,而 informer 和lister这两个包的主要功能,放在后面在重点讲解。
代码生成
这个代码生成工具名叫k8s.io/code-generator,使用方法如下所示:
# 代码生成的工作目录,也就是我们的项目路径
$ ROOT_PACKAGE="github.com/resouer/k8s-controller-custom-resource"
# API Group
$ CUSTOM_RESOURCE_NAME="samplecrd"
# API Version
$ CUSTOM_RESOURCE_VERSION="v1"
# 安装k8s.io/code-generator
$ go get -u k8s.io/code-generator/...
$ cd $GOPATH/src/k8s.io/code-generator
# 执行代码自动生成,其中pkg/client是生成目标目录,pkg/apis是类型定义目录
$ ./generate-groups.sh all "$ROOT_PACKAGE/pkg/client" "$ROOT_PACKAGE/pkg/apis" "$CUSTOM_RESOURCE_NAME:$CUSTOM_RESOURCE_VERSION"
代码生成工作完成之后,我们再查看一下这个项目的目录结构:
$ tree
.
├── controller.go
├── crd
│ └── network.yaml
├── example
│ └── example-network.yaml
├── main.go
└── pkg
├── apis
│ └── samplecrd
│ ├── constants.go
│ └── v1
│ ├── doc.go
│ ├── register.go
│ ├── types.go
│ └── zz_generated.deepcopy.go
└── client
├── clientset
├── informers
└── listers
其中,pkg/apis/samplecrd/v1 下面的 zz_generated.deepcopy.go 文件,就是自动生成的 DeepCopy 代码文件。
而整个 client 目录,以及下面的三个包(clientset、informers、 listers),都是 Kubernetes 为 Network 类型生成的客户端库,这些库会在后面编写自定义控制器的时候用到。
现在你就可以在 Kubernetes 集群里创建一个 Network 类型的 API 对象了。我们不妨一起来试验下。
创建自定义对象
首先,使用 network.yaml 文件,在 Kubernetes 中创建 Network 对象的 CRD(Custom Resource Definition):
$ kubectl apply -f crd/network.yaml
customresourcedefinition.apiextensions.k8s.io/networks.samplecrd.k8s.io created
这个操作,就告诉了 Kubernetes,我现在要添加一个自定义的 API 对象。而这个对象的 API 信息,正是 network.yaml里定义的内容。我们可以通过 kubectl get 命令,查看这个 CRD:
$ kubectl get crd
NAME CREATED AT
networks.samplecrd.k8s.io 2018-09-15T10:57:12Z
然后,我们就可以创建一个 Network 对象了,这里用到的是 example-network.yaml:
$ kubectl apply -f example/example-network.yaml
network.samplecrd.k8s.io/example-network created
通过这个操作,你就在 Kubernetes 集群里创建了一个 Network 对象。它的 API 资源路径是samplecrd.k8s.io/v1/networks。
这时候,你就可以通过 kubectl get 命令,查看到新创建的 Network 对象:
$ kubectl get network
NAME AGE
example-network 8s
你还可以通过 kubectl describe 命令,看到这个 Network 对象的细节:
$ kubectl describe network example-network
Name: example-network
Namespace: default
Labels: <none>
...API Version: samplecrd.k8s.io/v1
Kind: Network
Metadata:
...
Generation: 1
Resource Version: 468239
...
Spec:
Cidr: 192.168.0.0/16
Gateway: 192.168.0.1
当然 ,你也可以编写更多的 YAML 文件来创建更多的 Network 对象,这和创建 Pod、Deployment 的操作,没有任何区别。
上面我们创建出这样一个自定义 API 对象,我们只是完成了 Kubernetes 声明式 API 的一半工作。
接下来的另一半工作是:为这个 API 对象编写一个自定义控制器(Custom Controller)。
这样, Kubernetes 才能根据 Network API对象的“增、删、改”操作,在真实环境中做出相应的响应。比如,“创建、删除、修改”真正的 Neutron 网络。
Custom Controller
接下来继续和你一起完成剩下一半的工作,即:为 Network 这个自定义 API 对象编写一个自定义控制器(Custom Controller)。
正如之前提到的一些概念,“
声明式 API”并不像“命令式 API”那样有着明显的执行逻辑。这就使得基于声明式 API的业务功能实现,往往需要通过控制器模式来“监视”API对象的变化(比如,创建或者删除 Network),然后以此来决定实际要执行的具体工作。
总得来说,编写自定义控制器代码的过程包括:编写 main 函数、编写自定义控制器的定义,以及编写控制器里的业务逻辑三个部分。
编写 main 函数
首先,我们来编写这个自定义控制器的 main 函数。
main 函数的主要工作就是,定义并初始化一个自定义控制器(Custom Controller),然后启动它。这部分代码的主要内容如下所示:
func main() {
...
cfg, err := clientcmd.BuildConfigFromFlags(masterURL, kubeconfig)
...
kubeClient, err := kubernetes.NewForConfig(cfg)
...
networkClient, err := clientset.NewForConfig(cfg)
...
networkInformerFactory := informers.NewSharedInformerFactory(networkClient, ...)
controller := NewController(kubeClient, networkClient,
networkInformerFactory.Samplecrd().V1().Networks())
go networkInformerFactory.Start(stopCh)
if err = controller.Run(2, stopCh); err != nil {
glog.Fatalf("Error running controller: %s", err.Error())
}
}
可以看到,这个 main 函数主要通过三步完成了初始化并启动一个自定义控制器的工作。
1,main 函数根据我提供的 Master 配置(APIServer 的地址端口和 kubeconfig 的路径),创建一个 Kubernetes 的 client(kubeClient)和 Network 对象的 client(networkClient)。但是,如果我没有提供 Master 配置呢?
这时,main 函数会直接使用一种名叫 InClusterConfig 的方式来创建这个 client。这个方式,会假设你的自定义控制器是以 Pod 的方式运行在 Kubernetes 集群里的。
Kubernetes 里所有的 Pod 都会以
Volume的方式自动挂载 Kubernetes 的默认ServiceAccount。所以,这个控制器就会直接使用默认ServiceAccount数据卷里的授权信息,来访问 APIServer。
2,main 函数为 Network 对象创建一个叫作 InformerFactory(即:networkInformerFactory)的工厂,并使用它生成一个 Network 对象的 Informer,传递给控制器。
3,main 函数启动上述的 Informer,然后执行 controller.Run,启动自定义控制器。
控制器的工作原理
详细解释一下这个自定义控制器的工作原理。
在 Kubernetes 项目中,一个自定义控制器的工作原理,可以用下面这样一幅流程图来表示(在后面的叙述中,我会用“示意图”来指代它):

这个控制器要做的第一件事,是从 Kubernetes 的 APIServer 里获取它所关心的对象,也就是我定义的 Network 对象。
Informer
这个操作,依靠的是一个叫作 Informer(可以翻译为:通知器)的代码库完成的。Informer 与 API 对象是一一对应的,所以我传递给自定义控制器的,正是一个 Network 对象的 Informer(Network Informer)。
不知你是否已经注意到,我在创建这个 Informer 工厂的时候,需要给它传递一个 networkClient。
事实上,Network Informer 正是使用这个 networkClient,跟 APIServer 建立了连接。不过,真正负责维护这个连接的,则是 Informer 所使用的 Reflector 包。
Reflector使用的是一种叫作ListAndWatch的方法,来“获取”并“监听”这些Network对象实例的变化。
在 ListAndWatch 机制下,一旦 APIServer 端有新的 Network 实例被创建、删除或者更新,Reflector 都会收到“事件通知”。这时,该事件及它对应的 API 对象这个组合,就被称为增量(Delta),它会被放进一个 Delta FIFO Queue(即:增量先进先出队列)中。
而另一方面,Informe 会不断地从这个 Delta FIFO Queue 里读取(Pop)增量。每拿到一个增量,Informer 就会判断这个增量里的事件类型,然后创建或者更新本地对象的缓存。这个缓存,在 Kubernetes 里一般被叫作 Store。
比如,如果事件类型是 Added(添加对象),那么 Informer 就会通过一个叫作 Indexer 的库把这个增量里的 API 对象保存在本地缓存中,并为它创建索引。相反,如果增量的事件类型是 Deleted(删除对象),那么 Informer就会从本地缓存中删除这个对象。
这个同步本地缓存的工作,是 Informer 的第一个职责,也是它最重要的职责。
而 Informer 的第二个职责,则是根据这些事件的类型,触发事先注册好的 ResourceEventHandler。这些 Handler,需要在创建控制器的时候注册给它对应的 Informer。
接下来,我们就来编写这个控制器的定义,它的主要内容如下所示:
func NewController(
kubeclientset kubernetes.Interface,
networkclientset clientset.Interface,
networkInformer informers.NetworkInformer) *Controller {
...
controller := &Controller{
kubeclientset: kubeclientset,
networkclientset: networkclientset,
networksLister: networkInformer.Lister(),
networksSynced: networkInformer.Informer().HasSynced,
workqueue: workqueue.NewNamedRateLimitingQueue(..., "Networks"),
...
}
networkInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: controller.enqueueNetwork,
UpdateFunc: func(old, new interface{}) {
oldNetwork := old.(*samplecrdv1.Network)
newNetwork := new.(*samplecrdv1.Network)
if oldNetwork.ResourceVersion == newNetwork.ResourceVersion {
return
}
controller.enqueueNetwork(new)
},
DeleteFunc: controller.enqueueNetworkForDelete,
return controller
}
我前面在 main 函数里创建了两个 client(
kubeclientset和networkclientset),然后在这段代码里,使用这两个 client 和前面创建的Informer,初始化了自定义控制器。
在这个自定义控制器里,我还设置了一个工作队列(work queue),它正是处于示意图中间位置的 WorkQueue。这个工作队列的作用是,负责同步 Informer 和控制循环之间的数据。
然后,我为 networkInformer 注册了三个 Handler(AddFunc、UpdateFunc 和 DeleteFunc),分别对应 API 对象的“添加”“更新”和“删除”事件。而具体的处理操作,都是将该事件对应的 API 对象加入到工作队列中。
需要注意的是,实际入队的并不是 API 对象本身,而是它们的 Key,即:该 API 对象的/。
Informer通过一种叫作ListAndWatch的方法,把 APIServer 中的 API 对象缓存在了本地,并负责更新和维护这个缓存。
其中,ListAndWatch 方法的含义是:首先,通过 APIServer 的 LIST API“获取”所有最新版本的 API 对象;然后,再通过 WATCH API 来“监听”所有这些 API 对象的变化。
而通过监听到的事件变化,Informer 就可以实时地更新本地缓存,并且调用这些事件对应的 EventHandler了。
此外,在这个过程中,每经过 resyncPeriod 指定的时间,Informer 维护的本地缓存,都会使用最近一次 LIST 返回的结果强制更新一次,从而保证缓存的有效性。在 Kubernetes 中,这个缓存强制更新的操作就叫作:resync。
需要注意的是,这个定时 resync 操作,也会触发 Informer 注册的“更新”事件。但此时,这个“更新”事件对应的 Network 对象实际上并没有发生变化,即:新、旧两个 Network 对象的 ResourceVersion 是一样的。在这种情况下,Informer 就不需要对这个更新事件再做进一步的处理了。
Controle Loop
接下来,我们就来到了示意图中最后面的控制循环(Control Loop)部分,也正是我在 main 函数最后调用 controller.Run() 启动的“控制循环”。它的主要内容如下所示:
func (c *Controller) Run(threadiness int, stopCh <-chan struct{}) error {
...
if ok := cache.WaitForCacheSync(stopCh, c.networksSynced); !ok {
return fmt.Errorf("failed to wait for caches to sync")
}
...
for i := 0; i < threadiness; i++ {
go wait.Until(c.runWorker, time.Second, stopCh)
}
...
return nil
}
可以看到,启动控制循环的逻辑非常简单:
1,首先,等待 Informer 完成一次本地缓存的数据同步操作;
2,然后,直接通过 goroutine 启动一个(或者并发启动多个)“无限循环”的任务。
而这个“无限循环”任务的每一个循环周期,执行的正是我们真正关心的业务逻辑。
所以接下来,我们就来编写这个自定义控制器的业务逻辑,它的主要内容如下所示:
func (c *Controller) runWorker() {
for c.processNextWorkItem() {
}
}
func (c *Controller) processNextWorkItem() bool {
obj, shutdown := c.workqueue.Get()
...
err := func(obj interface{}) error {
...
if err := c.syncHandler(key); err != nil {
return fmt.Errorf("error syncing '%s': %s", key, err.Error())
}
c.workqueue.Forget(obj)
...
return nil
}(obj)
...
return true
}
func (c *Controller) syncHandler(key string) error {
namespace, name, err := cache.SplitMetaNamespaceKey(key)
...
network, err := c.networksLister.Networks(namespace).Get(name)
if err != nil {
if errors.IsNotFound(err) {
glog.Warningf("Network does not exist in local cache: %s/%s, will delete it from Neutron ...",
namespace, name)
glog.Warningf("Network: %s/%s does not exist in local cache, will delete it from Neutron ...",
namespace, name)
// FIX ME: call Neutron API to delete this network by name.
//
// neutron.Delete(namespace, name)
return nil
}
...
return err
}
glog.Infof("[Neutron] Try to process network: %#v ...", network)
// FIX ME: Do diff().
//
// actualNetwork, exists := neutron.Get(namespace, name)
//
// if !exists {
// neutron.Create(namespace, name)
// } else if !reflect.DeepEqual(actualNetwork, network) {
// neutron.Update(namespace, name)
// }
return nil
}
可以看到,在这个执行周期里(processNextWorkItem),我们首先从工作队列里出队(workqueue.Get)了一个成员,也就是一个 Key(Network 对象的:namespace/name)。
然后,在 syncHandler 方法中,我使用这个 Key,尝试从 Informer 维护的缓存中拿到了它所对应的 Network 对象。
可以看到,在这里,我使用了 networksLister 来尝试获取这个 Key 对应的 Network 对象。这个操作,其实就是在访问本地缓存的索引。实际上,在 Kubernetes 的源码中,你会经常看到控制器从各种 Lister 里获取对象,比如:podLister、nodeLister 等等,它们使用的都是 Informer 和缓存机制。
而如果控制循环从缓存中拿不到这个对象(即:networkLister 返回了 IsNotFound 错误),那就意味着这个 Network 对象的 Key 是通过前面的“删除”事件添加进工作队列的。所以,尽管队列里有这个 Key,但是对应的 Network 对象已经被删除了。
这时候,我就需要调用 Neutron 的 API,把这个 Key 对应的 Neutron 网络从真实的集群里删除掉。
而如果能够获取到对应的
Network对象,我就可以执行控制器模式里的对比“期望状态”和“实际状态”的逻辑了。
其中,自定义控制器“千辛万苦”拿到的这个 Network 对象,正是 APIServer 里保存的“期望状态”,即:用户通过 YAML 文件提交到 APIServer 里的信息。当然,在我们的例子里,它已经被 Informer 缓存在了本地。
对于“实际状态”的获取,我们的控制循环需要通过 Neutron API 来查询实际的网络情况。
比如,我可以先通过 Neutron 来查询这个 Network 对象对应的真实网络是否存在。
1,如果不存在,这就是一个典型的“期望状态”与“实际状态”不一致的情形。这时,我就需要使用这个 Network 对象里的信息(比如:CIDR 和 Gateway),调用 Neutron API 来创建真实的网络。
2,如果存在,那么,我就要读取这个真实网络的信息,判断它是否跟 Network 对象里的信息一致,从而决定我是否要通过 Neutron 来更新这个已经存在的真实网络。
这样,我就通过对比“期望状态”和“实际状态”的差异,完成了一次调协(Reconcile)的过程。
至此,一个完整的自定义 API 对象和它所对应的自定义控制器,就编写完毕了。
接下来,我们就一起来把这个项目运行起来,查看一下它的工作情况。
运行项目
你可以自己编译这个项目。编译并启动这个项目的具体流程如下所示:
# Clone repo
$ git clone https://github.com/resouer/k8s-controller-custom-resource$ cd k8s-controller-custom-resource
### Skip this part if you don't want to build
# Install dependency
$ go get github.com/tools/godep
$ godep restore
# Build
$ go build -o samplecrd-controller .
$ ./samplecrd-controller -kubeconfig=$HOME/.kube/config -alsologtostderr=true
I0915 12:50:29.051349 27159 controller.go:84] Setting up event handlers
I0915 12:50:29.051615 27159 controller.go:113] Starting Network control loop
I0915 12:50:29.051630 27159 controller.go:116] Waiting for informer caches to sync
E0915 12:50:29.066745 27159 reflector.go:134] github.com/resouer/k8s-controller-custom-resource/pkg/client/informers/externalversions/factory.go:117: Failed to list *v1.Network: the server could not find the requested resource (get networks.samplecrd.k8s.io)
...
你可以看到,自定义控制器被启动后,一开始会报错。
这是因为,此时 Network 对象的 CRD 还没有被创建出来,所以 Informer 去 APIServer 里“获取”(List)Network 对象时,并不能找到 Network 这个 API 资源类型的定义,即:
Failed to list *v1.Network: the server could not find the requested resource (get networks.samplecrd.k8s.io)
所以,接下来我就需要创建 Network 对象的 CRD,这个操作在上一篇文章里已经介绍过了。
在另一个 shell 窗口里执行:
$ kubectl apply -f crd/network.yaml
这时候,你就会看到控制器的日志恢复了正常,控制循环启动成功:
...
I0915 12:50:29.051630 27159 controller.go:116] Waiting for informer caches to sync
...
I0915 12:52:54.346854 25245 controller.go:121] Starting workers
I0915 12:52:54.346914 25245 controller.go:127] Started workers
接下来,我就可以进行 Network 对象的增删改查操作了。
首先,创建一个 Network 对象:
$ cat example/example-network.yaml
apiVersion: samplecrd.k8s.io/v1
kind: Network
metadata:
name: example-network
spec:
cidr: "192.168.0.0/16"
gateway: "192.168.0.1"
$ kubectl apply -f example/example-network.yaml
network.samplecrd.k8s.io/example-network created
这时候,查看一下控制器的输出:
...
I0915 12:50:29.051349 27159 controller.go:84] Setting up event handlers
I0915 12:50:29.051615 27159 controller.go:113] Starting Network control loop
I0915 12:50:29.051630 27159 controller.go:116] Waiting for informer caches to sync
...
I0915 12:52:54.346854 25245 controller.go:121] Starting workers
I0915 12:52:54.346914 25245 controller.go:127] Started workers
I0915 12:53:18.064409 25245 controller.go:229] [Neutron] Try to process network: &v1.Network{TypeMeta:v1.TypeMeta{Kind:"", APIVersion:""}, ObjectMeta:v1.ObjectMeta{Name:"example-network", GenerateName:"", Namespace:"default", ... ResourceVersion:"479015", ... Spec:v1.NetworkSpec{Cidr:"192.168.0.0/16", Gateway:"192.168.0.1"}} ...
I0915 12:53:18.064650 25245 controller.go:183] Successfully synced 'default/example-network'
...
可以看到,我们上面创建 example-network 的操作,触发了 EventHandler 的“添加”事件,从而被放进了工作队列。紧接着,控制循环就从队列里拿到了这个对象,并且打印出了正在“处理”这个 Network 对象的日志。
可以看到,这个 Network 的 ResourceVersion,也就是 API 对象的版本号,是 479015,而它的 Spec 字段的内容,跟我提交的 YAML 文件一摸一样,比如,它的 CIDR 网段是:192.168.0.0/16。
这时候,我来修改一下这个 YAML 文件的内容,如下所示:
$ cat example/example-network.yaml
apiVersion: samplecrd.k8s.io/v1
kind: Network
metadata:
name: example-network
spec:
cidr: "192.168.1.0/16"
gateway: "192.168.1.1"
然后,我们执行了 kubectl apply 命令来提交这次更新,如下所示:
$ kubectl apply -f example/example-network.yaml
network.samplecrd.k8s.io/example-network configured
这时候,我们就可以观察一下控制器的输出:
...
I0915 12:53:51.126029 25245 controller.go:229] [Neutron] Try to process network: &v1.Network{TypeMeta:v1.TypeMeta{Kind:"", APIVersion:""}, ObjectMeta:v1.ObjectMeta{Name:"example-network", GenerateName:"", Namespace:"default", ... ResourceVersion:"479062", ... Spec:v1.NetworkSpec{Cidr:"192.168.1.0/16", Gateway:"192.168.1.1"}} ...
I0915 12:53:51.126348 25245 controller.go:183] Successfully synced 'default/example-network'
可以看到,这一次,Informer 注册的“更新”事件被触发,更新后的 Network 对象的 Key 被添加到了工作队列之中。
所以,接下来控制循环从工作队列里拿到的 Network 对象,与前一个对象是不同的:它的 ResourceVersion 的值变成了 479062;而 Spec 里的字段,则变成了 192.168.1.0/16 网段。
最后,我再把这个对象删除掉:
$ kubectl delete -f example/example-network.yaml
这一次,在控制器的输出里,我们就可以看到,Informer 注册的“删除”事件被触发,并且控制循环“调用”Neutron API“删除”了真实环境里的网络。这个输出如下所示:
W0915 12:54:09.738464 25245 controller.go:212] Network: default/example-network does not exist in local cache, will delete it from Neutron ...
I0915 12:54:09.738832 25245 controller.go:215] [Neutron] Deleting network: default/example-network ...
I0915 12:54:09.738854 25245 controller.go:183] Successfully synced 'default/example-network'
以上,就是编写和使用自定义控制器的全部流程了。
实际上,这套流程不仅可以用在自定义 API 资源上,也完全可以用在 Kubernetes 原生的默认 API 对象上。
比如,我们在 main 函数里,除了创建一个 Network Informer 外,还可以初始化一个 Kubernetes 默认 API 对象的 Informer 工厂,比如 Deployment 对象的 Informer。这个具体做法如下所示:
func main() {
...
kubeInformerFactory := kubeinformers.NewSharedInformerFactory(kubeClient, time.Second*30)
controller := NewController(kubeClient, exampleClient,
kubeInformerFactory.Apps().V1().Deployments(),
networkInformerFactory.Samplecrd().V1().Networks())
go kubeInformerFactory.Start(stopCh)
...
}
在这段代码中,我们首先使用 Kubernetes 的 client(kubeClient)创建了一个工厂;
然后,我用跟 Network 类似的处理方法,生成了一个 Deployment Informer;
接着,我把 Deployment Informer 传递给了自定义控制器;当然,我也要调用 Start 方法来启动这个 Deployment Informer。
而有了这个 Deployment Informer 后,这个控制器也就持有了所有 Deployment 对象的信息
这就使得在这个自定义控制器里面,我可以通过对自定义 API 对象和默认 API 对象进行协同,从而实现更加复杂的编排功能。
比如:用户每创建一个新的
Deployment,这个自定义控制器,就可以为它创建一个对应的Network供它使用。
1232

被折叠的 条评论
为什么被折叠?



