深搜

深搜

搜索与回溯是计算机解题中常用的算法,很多问题无法根据某种确定的计算法则来求解,可以利用搜索与回溯的技术求解。回溯是搜索算法中的一种控制策略。它的基本思想是:为了求得问题的解,先选择某一种可能情况向前探索,在探索过程中,一旦发现原来的选择是错误的,就退回一步重新选择,继续向前探索,如此反复进行,直至得到解或证明无解。

如迷宫问题:进入迷宫后,先随意选择一个前进方向,一步步向前试探前进,如果碰到死胡同,说明前进方向已无路可走,这时,首先看其它方向是否还有路可走,如果有路可走,则沿该方向再向前试探;如果已无路可走,则返回一步,再看其它方向是否还有路可走;如果有路可走,则沿该方向再向前试探。按此原则不断搜索回溯再搜索,直到找到新的出路或从原路返回入口处无解为止。

 

递归回溯法算法框架[]

int Search(int k)

 {

 for (i=1;i<=算符种数;i++)

  if (满足条件)

     {

    保存结果

    if (到目的地) 输出解;

     else Search(k+1);

    恢复:保存结果之前的状态{回溯一步}

     }

 }

递归回溯法算法框架[]

int Search(int k)

 {

   if  (到目的地) 输出解;

   else

    for (i=1;i<=算符种数;i++)

     if  (满足条件)

       {

        保存结果;

             Search(k+1);

        恢复:保存结果之前的状态{回溯一步}

       }

}

哈哈哈,熟悉的八皇后也匆匆忙忙的过来了

【题目】八皇后问题:要在国际象棋棋盘中放八个皇后,使任意两个皇后都不能互相吃。(提示:皇后能吃同一行、同一列、同一对角线的任意棋子。)

放置第i个()皇后的算法为:

int search(i)

 {

     int j;

   for (i个皇后的位置j=1;j<=8;j++ )   //在本行的8列中去试

   if (本行本列允许放置皇后)

    {

     放置第i个皇后;对放置皇后的位置进行标记;

     if (i==8) 输出    //已经放完个皇后

        else search(i+1)//放置第i+1个皇后

     对放置皇后的位置释放标记,尝试下一个位置是否可行;

    }

 }

【算法分析】

显然问题的关键在于如何判定某个皇后所在的行、列、斜线上是否有别的皇后;可以从矩阵的特点上找到规律,如果在同一行,则行号相同;如果在同一列上,则列号相同;如果同在/ 斜线上的行列值之和相同;如果同在\ 斜线上的行列值之差相同;从下图可验证:

 

考虑每行有且仅有一个皇后,设一维数组A[1..8]表示皇后的放置:第i行皇后放在第j列,用A[i]j来表示,即下标是行数,内容是列数。例如:A[3]=5就表示第3个皇后在第3行第5列上。

判断皇后是否安全,即检查同一列、同一对角线是否已有皇后,建立标志数组b[1..8]控制同一列只能有一个皇后,若两皇后在同一对角线上,则其行列坐标之和或行列坐标之差相等,故亦可建立标志数组c[1..16]、d[-7..7]控制同一对角线上只能有一个皇后。

如果斜线不分方向,则同一斜线上两皇后的行号之差的绝对值与列号之差的绝对值相同。在这种方式下,要表示两个皇后IJ不在同一列或斜线上的条件可以描述为:A[I]<>A[J] AND ABS(I-J)<>ABS(A[I]-A[J]){IJ分别表示两个皇后的行号}

【参考程序】

int search(int i)//从第1个皇后开始放置

{

  int j;

  for(j=1;j<=8;j++)   //每个皇后都有8位置()可以试放                                          

if ((!b[j])&&(!c[i+j])&&(!d[i-j+7]))                   

//寻找放置皇后的位置,由于C++不能操作负数组,因此考虑加7    {     置皇后,建立相应标志值                                                        a[i]=j;    //摆放皇后                                                   

       b[j]=1;   //宣布占领第j列                                                      

       c[i+j]=1,d[i-j+7]=1;    //占领两个对角线                                           

if(i==8)  print();      //8个皇后都放置好,输出

else search(i+1);       //继续递归放置下一个皇后

       b[j]=0,c[i+j]=0;

d[i-j+7]=0; //递归返回即为回溯一步,当前皇后退出                                 

    }

}

 

【总结】:

  1. 最普遍的剪枝就是可行性剪枝与最优化剪枝,缩小宽度范围(最优化剪枝),贪心化删减dfs的深度
  2. 对于Dfs,确定Dfs的深度是非常重要的,其次注意每次宽度深搜的最大宽度
  3. 深度优先搜索要学会迭代加深,估价函数要求简洁诶
  4. 剪枝的思想一定要贯彻整一场考试,学会舍得,用正确性换空间与时间,可以做,请谨慎点

 感谢各位与信奥一本通的鼎力相助!

转载于:https://www.cnblogs.com/SeanOcean/p/10975590.html

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代示例不仅展示了理论知识在
### IntelliJ IDEA 中通义 AI 功能介绍 IntelliJ IDEA 提供了一系列强大的工具来增强开发体验,其中包括与通义 AI 相关的功能。这些功能可以帮助开发者更高效地编写代并提高生产力。 #### 安装通义插件 为了使用通义的相关特性,在 IntelliJ IDEA 中需要先安装对应的插件: 1. 打开 **Settings/Preferences** 对话框 (Ctrl+Alt+S 或 Cmd+, on macOS)。 2. 导航到 `Plugins` 页面[^1]。 3. 在 Marketplace 中搜索 "通义" 并点击安装按钮。 4. 完成安装后重启 IDE 使更改生效。 #### 配置通义服务 成功安装插件之后,还需要配置通义的服务连接信息以便正常使用其提供的各项能力: - 进入设置中的 `Tools | Qwen Coding Assistant` 菜单项[^2]。 - 填写 API Key 和其他必要的认证参数。 - 测试连接以确认配置无误。 #### 使用通义辅助编程 一旦完成上述准备工作,就可以利用通义来进行智能编支持了。具体操作如下所示: ##### 自动补全代片段 当输入部分语句时,IDE 将自动提示可能的后续逻辑,并允许一键插入完整的实现方案[^3]。 ```java // 输入 while 循环条件前半部分... while (!list.isEmpty()) { // 激活建议列表选择合适的循环体内容 } ``` ##### 解释现有代含义 选中某段复杂的表达式或函数调用,右键菜单里会有选项可以请求通义解析这段代的作用以及优化意见。 ##### 生产测试案例 对于已有的业务逻辑模块,借助于通义能够快速生成单元测试框架及初始断言集,减少手动构建的成本。 ```python def test_addition(): result = add(2, 3) assert result == 5, f"Expected 5 but got {result}" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值