nyoj 216-A problem is easy ((i + 1) * (j + 1) = N + 1)

博客描述了一个有趣的数学问题,即给定一个数N,求有多少种方式可以将N表示为i*j+i+j的形式,其中0<i<=j。文章提供了一个C/C++的解决方案,通过计算平方根和遍历可能的i值来解决这个问题。

216-A problem is easy


内存限制:64MB 时间限制:1000ms 特判: No
通过数:13 提交数:60 难度:3

题目描述:

When Teddy was a child , he was always thinking about some simple math problems ,such as “What it’s 1 cup of water plus 1 pile of dough ..” , “100 yuan buy 100 pig” .etc..

One day Teddy met a old man in his dream , in that dream the man whose name was“RuLai” gave Teddy a problem :

Given an N , can you calculate how many ways to write N as i * j + i + j (0 < i <= j) ?

Teddy found the answer when N was less than 10…but if N get bigger , he found it was too difficult for him to solve.
Well , you clever ACMers ,could you help little Teddy to solve this problem and let him have a good dream ?

输入描述:

The first line contain a T(T <= 2000) . followed by T lines ,each line contain an integer N (0<=N <= 10^11).

输出描述:

For each case, output the number of ways in one line

样例输入:

复制
2
1
3

样例输出:

0
1

C/C++  AC:

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstring>
 4 #include <cstdio>
 5 #include <cmath>
 6 #include <stack>
 7 #include <set>
 8 #include <map>
 9 #include <queue>
10 #include <climits>
11 
12 using namespace std;
13 
14 int main()
15 {
16     long long T, a, b;
17     cin >>T;
18     while (T --)
19     {
20         scanf("%lld", &a);
21         b = sqrt(a + 1);
22         long long cnt = 0;
23         for (int i = 2; i <= b; ++ i)
24         {
25             if ((a + 1) % i == 0)
26                 ++ cnt;
27         }
28         printf("%lld\n", cnt);
29     }
30 }

 

转载于:https://www.cnblogs.com/GetcharZp/p/9333497.html

x1y2 x2y3 x3y1-x1y3-x2y1-x3y2 是计算三角形面积的公式中的一部分。 在这个公式中,x1、x2、x3分别表示三角形的三个顶点的x坐标,y1、y2、y3分别表示三角形的三个顶点的y坐标。通过计算这个表达式的值,可以得到三角形的面积。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [TetraCluster:使用并行Java 2库的Java并行程序。 该程序在群集并行计算机上运行,​​以从给定的点集中找到...](https://download.youkuaiyun.com/download/weixin_42171208/18283141)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [线性代数有个题,求正交变换x=Qy,化二次型f(x1,x2,x3)=8x1x2+8x1x3+8x2x3为标准型求出特征值](https://blog.youkuaiyun.com/weixin_39956182/article/details/115882118)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [nyoj-67-三角形面积(S=(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2))](https://blog.youkuaiyun.com/weixin_30492601/article/details/99541033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值