向量化编程

在机器学习中,尽量使用内置函数,尽量避免显示for循环,向量化编程可以程序运行速度显著加快。

import time
a = np.random.rand(1000000)
b = np.random.rand(1000000)
tic = time.time()
c = np.dot(a,b)
toc = time.time()
print "Vectorized version:" + str(1000*(toc-tic)) +"ms"

c = 0
tic = time.time()
for i in range(1000000):
    c == a[i]*b[i]
toc = time.time()
print "For loop:"+ str(1000*(toc-tic)) +"ms"

Vectorized version:3.00002098083ms
For loop:807.000160217ms

import time

A = np.random.rand(10000,100)
b = np.random.rand(100,1)

c = np.zeros((10000,1))
tic = time.time()
for i in range(10000):
    for j in range(100):
        c[i] += A[i][j]*b[j]
toc = time.time()
print "For loop:"+ str(1000*(toc-tic)) +"ms"

tic = time.time()
c = np.dot(A,b)
toc = time.time()
print "Vectorized version:" + str(1000*(toc-tic)) +"ms"

For loop:414.999961853ms
Vectorized version:0.999927520752ms

import time

v = np.random.rand(1000000,1)
c = np.zeros((1000000,1))
tic = time.time()
for i in range(1000000):
    c[i] = math.exp(v[i])
toc = time.time()
print "For loop:"+ str(1000*(toc-tic)) +"ms"

tic = time.time()
c = np.exp(v)
toc = time.time()
print "Vectorized version:" + str(1000*(toc-tic)) +"ms"

For loop:1101.00007057ms
Vectorized version:29.9999713898ms

参考 吴恩达老师的课程:神经网络与深度学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值