HDU -> ACM -> Pseudoprime numbers

本文介绍了一种基于费马小定理的伪素数判断算法,并通过C++代码实现了一个快速幂运算函数来验证给定的数值是否为特定基数下的伪素数。该算法适用于在大范围内快速筛选出可能的伪素数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pseudoprime numbers

Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 21   Accepted Submission(s) : 13
Problem Description
Fermat's theorem states that for any prime number p and for any integer a > 1, a^p == a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1,000,000,000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
 

Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
 

Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
 

Sample Input
 
 
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
 

Sample Output
 
 
no
no
yes
no
yes
yes
 

#include<cstdio>  
int quickpow(__int64 n,__int64 m,__int64 mod)//n是底数,m是幂数,mod是取余数  
{  
    __int64 ans=1,base=n;  
    while(m)  
    {  
        if(m&1)//如果幂数是奇数,则将底数保存在ans中,这样幂数-1变成偶数就可以继续降幂了。 base是幂数。  
  
        {  
            ans=(base*ans)%mod;//保存并更新多幂底数  
        }  
        base=(base*base)%mod;//更新底数  
        m/=2;//更新幂数   
    }  
    return ans;  
}  
int main()  
{  
    __int64 n,m;  
    __int64 mod;  
    while(scanf("%I64d%I64d",&n,&m)&&n||m)  
    {  
        int sum=0;  
        for(int i=2;i*i<n;i++)  
        {  
            if(n%i==0)  
            sum++;  
        }  
        if(sum==0)  
        printf("no\n");  
        else  
        {  
        mod=n;  
        if(quickpow(m,n,mod)==m)  
        printf("yes\n");  
        else  
        printf("no\n");       
        }     
    }  
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值