Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
解法一:
还是用二分法来做,用到的就是讲一个数值转化成矩阵元素的下表。另外要注意一些corner case,target小于matrix中第一个值或者大于matrix中最后一个值。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int rows = matrix.size(), cols = matrix[0].size()?matrix[0].size():0;
if(!rows || !cols) return 0;
if(target<matrix[0][0]) return false;
if(target>matrix.back().back()) return false;
int left = 0, right = rows*cols - 1;
while(left<=right){
int mid = left + (right-left)/2;
int i_mid = mid/cols, j_mid = mid%cols;
if(matrix[i_mid][j_mid]==target) return true;
else if(matrix[i_mid][j_mid]>target) right = mid-1;
else left = mid+1;
}
return false;
}
};