[leetcode] 376. Wiggle Subsequence

本文介绍了一种高效算法来确定给定整数序列中最长摆动子序列的长度,并提供了两种实现方法:一种使用动态规划,另一种实现O(n)时间复杂度的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence. 

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Examples:

Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence.

Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Input: [1,2,3,4,5,6,7,8,9]
Output: 2

Follow up:
Can you do it in O(n) time?

解法一:

dp的思想。up,down两个数组的元素分别表示到第i个数字,以上升或者下降结束的最长subsequence的长度。nums[i] > nums[i-1]表示上升,down[i-1]是在i-1元素以下降结束的subsequence的长度,所以up[i] = down[i-1] + 1, down[i] = down[i-1]。相应的得到nums[i] < nums[i-1]的递推公式。 

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if(nums.size()<=2) return nums.size(); 
        vector<int> up(nums.size(),0);
        vector<int> down(nums.size(),0);
        up[0] = down[0] = 1;
        
        for(int i=1; i<nums.size(); i++){
            if(nums[i-1]<nums[i]){
                up[i] = down[i-1]+1;
                down[i] = down[i-1];
            }
            else if(nums[i-1]>nums[i]){
                down[i] = up[i-1]+1;
                up[i] = up[i-1];
            }
            else{
                down[i] = down[i-1];
                up[i] = up[i-1];
            }
        }
        return max(down.back(), up.back());
        
        
    }
};


解法二:

O(n)的方法。up表示以nums[i-1]结尾并且上升的最长subsequence的长度,down表示以nuts[i-1]结尾并且下降的最长subsequence的长度。所以,当num[i]>nums[i-1]说明可以接上down的subsequence,up长度为down+1。如果num[i] < nums[i-1],则down = up + 1。

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int up = 1, down = 1, n = nums.size();
        for(int i= 1; i<n; i++){
            if (nums[i]>nums[i-1]) up = down + 1;
            else if (nums[i] < nums[i-1]) down = up + 1;
        }
        return min(n,max(up,down));
        
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值