习题2.17,直接利用list-ref和length过程
习题2.18,采用迭代法
习题2.21,递归方式:
习题2.23,这与ruby中的each是一样的意思,将操作应用于集合的每个元素:
习题2.24,盒子图就不画了,麻烦,解释器输出:
第一个list可以表示为(list 1 3 (list 5 7) 9)
因此取7的操作应当是:
因此取7操作为:
第三个list可以表示为:
习题2.26,纯粹的动手题,就不说了
习题2.27,在reverse的基础上进行修改,同样采用迭代,比较难理解:
习题2.28,递归,利用append过程就容易了:
(define (last
-
pair items)
(list (list - ref items ( - (length items) 1 ))))
(list (list - ref items ( - (length items) 1 ))))
习题2.18,采用迭代法
(define (reverse
-
list items)
(define (reverse - iter i k)
( if ( null ? i) k (reverse - iter (cdr i) (cons (car i) k))))
(reverse - iter items ()))
习题2.20,如果两个数的奇偶相同,那么他们的差模2等于0,根据这一点可以写出:
(define (reverse - iter i k)
( if ( null ? i) k (reverse - iter (cdr i) (cons (car i) k))))
(reverse - iter items ()))
(define (same
-
parity a . b)
(define (same - parity - temp x y)
(cond (( null ? y) y)
(( = (remainder ( - (car y) x) 2 ) 0 )
(cons (car y) (same - parity - temp x (cdr y))))
( else
(same - parity - temp x (cdr y)))))
(cons a (same - parity - temp a b)))
利用了基本过程remainder取模
(define (same - parity - temp x y)
(cond (( null ? y) y)
(( = (remainder ( - (car y) x) 2 ) 0 )
(cons (car y) (same - parity - temp x (cdr y))))
( else
(same - parity - temp x (cdr y)))))
(cons a (same - parity - temp a b)))
习题2.21,递归方式:
(define (square
-
list items)
( if ( null ? items)
items
(cons (square (car items)) (square - list (cdr items)))))
利用map过程:
( if ( null ? items)
items
(cons (square (car items)) (square - list (cdr items)))))
(define (square
-
list items)
(map square items))
(map square items))
习题2.23,这与ruby中的each是一样的意思,将操作应用于集合的每个元素:
(define (
for
-
each proc items)
(define ( for - each - temp proc temp items)
( if ( null ? items)
#t
( for - each - temp proc (proc (car items)) (cdr items))))
( for - each - temp proc 0 items))
最后返回true
(define ( for - each - temp proc temp items)
( if ( null ? items)
#t
( for - each - temp proc (proc (car items)) (cdr items))))
( for - each - temp proc 0 items))
习题2.24,盒子图就不画了,麻烦,解释器输出:
Welcome to DrScheme, version
360
.
Language: Standard (R5RS).
> (list 1 (list 2 (list 3 4 )))
( 1 ( 2 ( 3 4 )))
树形状应当是这样
Language: Standard (R5RS).
> (list 1 (list 2 (list 3 4 )))
( 1 ( 2 ( 3 4 )))
习题2.25,
第一个list可以表示为(list 1 3 (list 5 7) 9)
因此取7的操作应当是:
(car (cdr (car (cdr (cdr (list
1
3
(list
5
7
)
9
))))))
第二个list表示为:(list (list 7))
因此取7操作为:
(car (car (list (list
7
))))
第三个list可以表示为:
(list
1
(list
2
(list
3
(list
4
(list
5
(list
6
7
))))))
因此取7的操作为:
(define x (list
1
(list
2
(list
3
(list
4
(list
5
(list
6
7
)))))))
(car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr x))))))))))))
够恐怖!-_-
(car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr x))))))))))))
习题2.26,纯粹的动手题,就不说了
习题2.27,在reverse的基础上进行修改,同样采用迭代,比较难理解:
(define (deep
-
reverse x)
(define (reverse - iter rest result)
(cond ((null? rest) result)
(( not (pair? (car rest)))
(reverse - iter (cdr rest)
(cons (car rest) result)))
( else
(reverse - iter (cdr rest)
(cons (deep - reverse (car rest)) result)))
))
(reverse - iter x ()))
(define (reverse - iter rest result)
(cond ((null? rest) result)
(( not (pair? (car rest)))
(reverse - iter (cdr rest)
(cons (car rest) result)))
( else
(reverse - iter (cdr rest)
(cons (deep - reverse (car rest)) result)))
))
(reverse - iter x ()))
习题2.28,递归,利用append过程就容易了:
(define (finge x)
(cond ((pair? x) (append (finge (car x)) (finge (cdr x))))
((null? x) ())
( else (list x))))
(cond ((pair? x) (append (finge (car x)) (finge (cdr x))))
((null? x) ())
( else (list x))))
