每个语法节点Tree都有Type属性,部分的语法节点有Symbol属性,如下:

与Symbol类型与Type类型之间的关系如下:

下面是Symbol与Type之间的关系:
(1)MethodSymbol("finalize").type = MethodType("()void").tsym=
ClassSymbol("Method").type=ClassType("Method").tsym=ClassSymbol("Method")
(2)TypeVar("M").tsym=TypeSymbol("M").type=TypeVar("M").tsym
(3)PackageSymbol("java").type = PackageType("java").tsym=PackageSymbol("java")
(4)VarSymbol("length").type=Type("int").tsym=ClassSymbol("int").type=Type("int").tsym=ClassSymbol("int")
下面是Node与Type之间的关系:
class Outer{
class Inner{}
}
public class Test01 extends Outer.Inner{
public Test01(Outer o){
o.super();
}
}
Outer.Inner是一个树节点,如果这个节点中的type有值,则直接返回即可,不用再进行标注。
关于Node、Symbol与Type举一个例子,如下:
import java.io.FileInputStream;
import java.io.InputStream;
public class TestScope<T1 extends InputStream,T2>{
public void test(){
TestScope<FileInputStream,?> x = null;
}
}
截图如下:

JCTypeApply的Node结点中没有Symbol属性,但是每个Node中都有Type属性,其值如上图蓝色部分。
ClassSymbol的Symbol结点中,由于每个Symbol中都有TypeSymbol类型的属性,这个属性值为com.test18.TestScope<T1,T2>
ClassType的Type结点中,由于每个Type中都有Symbol属性,这个属性的值为com.test18.TestScope
1、Symbol
对于Symbol来说:

Symbol中既有Symbol类型属性也有Type类型的属性,如下:
/** The type of this symbol.
*/
public Type type;
/** The owner of this symbol.
*/
public Symbol owner;
/** The completer of this symbol.
*/
public Completer completer;
/** A cache for the type erasure of this symbol.
*/
public Type erasure_field;
所以每个Symbol类型都有type属性。
而标注Symbol类型的是Kinds枚举类型,代码如下:
/** Internal symbol kinds, which distinguish between elements of
* different subclasses of Symbol. Symbol kinds are organized so they can be or'ed to sets.
*/
public class Kinds {
private Kinds() {} // uninstantiable
/** The empty set of kinds.
*/
public final static int NIL = 0;
/** The kind of package symbols.
*/
public final static int PCK = 1 << 0;
/** The kind of type symbols (classes, interfaces and type variables).
*/
public final static int TYP = 1 << 1;
/** The kind of variable symbols.
*/
public final static int VAR = 1 << 2;
/** The kind of values (variables or non-variable expressions), includes VAR.
*/
public final static int VAL = (1 << 3) | VAR;
/** The kind of methods.
*/
public final static int MTH = 1 << 4;
/** The error kind, which includes all other kinds.
*/
public final static int ERR = (1 << 5) - 1;
/** The set of all kinds.
*/
public final static int AllKinds = ERR;
/** Kinds for erroneous symbols that complement the above
*/
public static final int ERRONEOUS = 1 << 6;
public static final int AMBIGUOUS = ERRONEOUS+1; // ambiguous reference
public static final int HIDDEN = ERRONEOUS+2; // hidden method or field
public static final int STATICERR = ERRONEOUS+3; // nonstatic member from static context
public static final int ABSENT_VAR = ERRONEOUS+4; // missing variable
public static final int WRONG_MTHS = ERRONEOUS+5; // methods with wrong arguments
public static final int WRONG_MTH = ERRONEOUS+6; // one method with wrong arguments
public static final int ABSENT_MTH = ERRONEOUS+7; // missing method
public static final int ABSENT_TYP = ERRONEOUS+8; // missing type
public enum KindName implements Formattable {
ANNOTATION("kindname.annotation"),
CONSTRUCTOR("kindname.constructor"),
INTERFACE("kindname.interface"),
ENUM("kindname.enum"),
STATIC("kindname.static"),
TYPEVAR("kindname.type.variable"),
BOUND("kindname.type.variable.bound"),
VAR("kindname.variable"),
VAL("kindname.value"),
METHOD("kindname.method"),
CLASS("kindname.class"),
STATIC_INIT("kindname.static.init"),
INSTANCE_INIT("kindname.instance.init"),
PACKAGE("kindname.package");
private String name;
KindName(String name) {
this.name = name;
}
public String toString() {
return name;
}
public String getKind() {
return "Kindname";
}
public String toString(Locale locale, Messages messages) {
String s = toString();
return messages.getLocalizedString(locale, "compiler.misc." + s);
}
}
/** A KindName representing a given symbol kind
*/
public static KindName kindName(int kind) {
switch (kind) {
case PCK: return KindName.PACKAGE;
case TYP: return KindName.CLASS;
case VAR: return KindName.VAR;
case VAL: return KindName.VAL;
case MTH: return KindName.METHOD;
default : throw new AssertionError("Unexpected kind: "+kind);
}
}
/** A KindName representing a given symbol
*/
public static KindName kindName(Symbol sym) {
switch (sym.getKind()) {
case PACKAGE:
return KindName.PACKAGE;
case ENUM:
return KindName.ENUM;
case ANNOTATION_TYPE:
case CLASS:
return KindName.CLASS;
case INTERFACE:
return KindName.INTERFACE;
case TYPE_PARAMETER:
return KindName.TYPEVAR;
case ENUM_CONSTANT:
case FIELD:
case PARAMETER:
case LOCAL_VARIABLE:
case EXCEPTION_PARAMETER:
case RESOURCE_VARIABLE:
return KindName.VAR;
case CONSTRUCTOR:
return KindName.CONSTRUCTOR;
case METHOD:
return KindName.METHOD;
case STATIC_INIT:
return KindName.STATIC_INIT;
case INSTANCE_INIT:
return KindName.INSTANCE_INIT;
default:
if (sym.kind == VAL)
// I don't think this can happen but it can't harm
// playing it safe --ahe
return KindName.VAL;
else
throw new AssertionError("Unexpected kind: "+sym.getKind());
}
}
/** A set of KindName(s) representing a set of symbol's kinds.
*/
public static EnumSet<KindName> kindNames(int kind) {
EnumSet<KindName> kinds = EnumSet.noneOf(KindName.class);
if ((kind & VAL) != 0)
kinds.add(((kind & VAL) == VAR) ? KindName.VAR : KindName.VAL);
if ((kind & MTH) != 0) kinds.add(KindName.METHOD);
if ((kind & TYP) != 0) kinds.add(KindName.CLASS);
if ((kind & PCK) != 0) kinds.add(KindName.PACKAGE);
return kinds;
}
/** A KindName representing the kind of a given class/interface type.
*/
public static KindName typeKindName(Type t) {
if (t.tag == TYPEVAR ||
t.tag == CLASS && (t.tsym.flags() & COMPOUND) != 0)
return KindName.BOUND;
else if (t.tag == PACKAGE)
return KindName.PACKAGE;
else if ((t.tsym.flags_field & ANNOTATION) != 0)
return KindName.ANNOTATION;
else if ((t.tsym.flags_field & INTERFACE) != 0)
return KindName.INTERFACE;
else
return KindName.CLASS;
}
/** A KindName representing the kind of a a missing symbol, given an
* error kind.
* */
public static KindName absentKind(int kind) {
switch (kind) {
case ABSENT_VAR:
return KindName.VAR;
case WRONG_MTHS: case WRONG_MTH: case ABSENT_MTH:
return KindName.METHOD;
case ABSENT_TYP:
return KindName.CLASS;
default:
throw new AssertionError("Unexpected kind: "+kind);
}
}
}
Symbol可以通过访问模式来访问各个结点,定义如下:
(1)Symbol.Visitor<R, P>
符号类中定义的访问者模式接口如下:
/**
* A visitor for symbols. A visitor is used to implement operations
* (or relations) on symbols. Most common operations on types are
* binary relations and this interface is designed for binary
* relations, that is, operations on the form
* Symbol × P → R.
* <!-- In plain text: Type x P -> R -->
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <P> the type of the second argument (the first being the
* symbol itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public interface Visitor<R,P> {
R visitClassSymbol(ClassSymbol s, P arg);
R visitMethodSymbol(MethodSymbol s, P arg);
R visitPackageSymbol(PackageSymbol s, P arg);
R visitOperatorSymbol(OperatorSymbol s, P arg);
R visitVarSymbol(VarSymbol s, P arg);
R visitTypeSymbol(TypeSymbol s, P arg);
R visitSymbol(Symbol s, P arg);
}
(2)Types中的DefaultSymbolVisitor<R,S>
/**
* A default visitor for symbols. All visitor methods except
* visitSymbol are implemented by delegating to visitSymbol. Concrete
* subclasses must provide an implementation of visitSymbol and can
* override other methods as needed.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* symbol itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
final public R visit(Symbol s, S arg) { return s.accept(this, arg); }
public R visitClassSymbol(ClassSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitMethodSymbol(MethodSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitOperatorSymbol(OperatorSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitPackageSymbol(PackageSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitTypeSymbol(TypeSymbol s, S arg) { return visitSymbol(s, arg); }
public R visitVarSymbol(VarSymbol s, S arg) { return visitSymbol(s, arg); }
}
2、Type

对于每个Type类型来说,只限定有TypeSymbol类型的属性,也就是包、类和类型变量对应的符号。
// The defining class / interface / package / type variable
public TypeSymbol typeSymbol; // 只有ClassSymbol与PackageSymbol继承了TypeSymbol
标注每个Type类型的为TypeTags,代码如下:
/** An interface for type tag values, which distinguish between different sorts of types.
*/
public class TypeTags {
private TypeTags() {} // uninstantiable
/** The tag of the basic type `byte'.
*/
public static final int BYTE = 1;
/** The tag of the basic type `char'.
*/
public static final int CHAR = BYTE+1;
/** The tag of the basic type `short'.
*/
public static final int SHORT = CHAR+1;
/** The tag of the basic type `int'.
*/
public static final int INT = SHORT+1;
/** The tag of the basic type `long'.
*/
public static final int LONG = INT+1;
/** The tag of the basic type `float'.
*/
public static final int FLOAT = LONG+1;
/** The tag of the basic type `double'.
*/
public static final int DOUBLE = FLOAT+1;
/** The tag of the basic type `boolean'.
*/
public static final int BOOLEAN = DOUBLE+1;
/** The tag of the type `void'.
*/
public static final int VOID = BOOLEAN+1;
/** The tag of all class and interface types.
*/
public static final int CLASS = VOID+1;
/** The tag of all array types.
*/
public static final int ARRAY = CLASS+1;
/** The tag of all (monomorphic 单一同态的) method types.
*/
public static final int METHOD = ARRAY+1;
/** The tag of all package "types".
*/
public static final int PACKAGE = METHOD+1;
/** The tag of all (source-level) type variables.
*/
public static final int TYPEVAR = PACKAGE+1;
/** The tag of all type arguments.
*/
public static final int WILDCARD = TYPEVAR+1;
/** The tag of all polymorphic (method-) types.
*/
public static final int FORALL = WILDCARD+1;
/** The tag of the bottom type <null>.
*/
public static final int BOT = FORALL+1;
/** The tag of a missing type.
*/
public static final int NONE = BOT+1;
/** The tag of the error type.
*/
public static final int ERROR = NONE+1;
/** The tag of an unknown type
*/
public static final int UNKNOWN = ERROR+1;
/** The tag of all instantiatable type variables.
*/
public static final int UNDETVAR = UNKNOWN+1;
/** The number of type tags.
*/
public static final int TypeTagCount = UNDETVAR+1;
/** The maximum tag of a basic type.
*/
public static final int lastBaseTag = BOOLEAN;
/** The minimum tag of a partial type
*/
public static final int firstPartialTag = ERROR;
}
Javac为Type结果定义了访问者接口,如下:
(1)Type.Visitor<R, S>
类型Type中定义的访问者模式:
/**
* A visitor for types. A visitor is used to implement operations
* (or relations) on types. Most common operations on types are
* binary relations and this interface is designed for binary
* relations, that is, operations on the form
* Type × S → R.
* <!-- In plain text: Type x S -> R -->
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* type itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public interface Visitor<R,S> {
R visitClassType(ClassType t, S s);
R visitWildcardType(WildcardType t, S s);
R visitArrayType(ArrayType t, S s);
R visitMethodType(MethodType t, S s);
R visitPackageType(PackageType t, S s);
R visitTypeVar(TypeVar t, S s);
R visitCapturedType(CapturedType t, S s);
R visitForAll(ForAll t, S s);
R visitUndeterminedVar(UndeterminedVar t, S s);
R visitErrorType(ErrorType t, S s);
R visitType(Type t, S s);
}
(2)Types中的DefaultTypeVisitor<R,S>,SimpleTypeVisitor<R,S>
/**
* A default visitor for types. All visitor methods except
* visitType are implemented by delegating to visitType. Concrete
* subclasses must provide an implementation of visitType and can
* override other methods as needed.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* type itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
final public R visit(Type t, S s) { return t.accept(this, s); }
public R visitClassType(ClassType t, S s) { return visitType(t, s); }
public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
public R visitArrayType(ArrayType t, S s) { return visitType(t, s); }
public R visitMethodType(MethodType t, S s) { return visitType(t, s); }
public R visitPackageType(PackageType t, S s) { return visitType(t, s); }
public R visitTypeVar(TypeVar t, S s) { return visitType(t, s); }
public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
public R visitForAll(ForAll t, S s) { return visitType(t, s); }
public R visitUndeterminedVar(UndeterminedVar t, S s) { return visitType(t, s); }
public R visitErrorType(ErrorType t, S s) { return visitType(t, s); }
}
/**
* A <em>simple</em> visitor for types. This visitor is simple as
* captured wildcards, for-all types (generic methods), and
* undetermined(未确定的) type variables (part of inference) are hidden.
* Captured wildcards are hidden by treating them as type
* variables and the rest are hidden by visiting their qtypes.
*
* @param <R> the return type of the operation implemented by this
* visitor; use Void if no return type is needed.
* @param <S> the type of the second argument (the first being the
* type itself) of the operation implemented by this visitor; use
* Void if a second argument is not needed.
*/
public static abstract class SimpleTypeVisitor<R,S> extends DefaultTypeVisitor<R,S> {
@Override
public R visitCapturedType(CapturedType t, S s) {
return visitTypeVar(t, s);
}
@Override
public R visitForAll(ForAll t, S s) {
return visit(t.qtype, s);
}
@Override
public R visitUndeterminedVar(UndeterminedVar t, S s) {
return visit(t.qtype, s);
}
}
本文深入探讨Java编译过程中语法树(Tree)、符号(Symbol)及类型(Type)三者间的关系,详细解析Symbol与Type的属性关联,以及Node、Symbol、Type之间的互动机制。通过具体示例,阐述了访问模式在符号和类型处理中的应用。
1615

被折叠的 条评论
为什么被折叠?



