CRF Papers 总结 (First stored)

本文汇总了一系列关于条件随机场(CRF)、马尔科夫随机场(MRF)及其它相关模型的学习资料。旨在帮助初学者理解这些模型在图像分类中的应用,并提供了一些关键论文与教程的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In this article I compile a list of good papers and tutorials related to MRFs, CRFs and DRFs. Hopefully you will find it useful.

Recently I have been interested in conditional random fields (CRFs) for image modeling/labeling. I had really difficult time finding good materials to read. In this post, I would like to dedicate to people who are having a difficult time understanding CRFs, particularly, for image classification. My goal is to save your time by pointing you out to some good and useful materials, so that you don’t have to waste a lot of time like I did in past few weeks.

You might come up with some questions like what are the differences between CRF vs Bayesian networks (BNs) or between CRF vs MRF? What are the advantages of CRFs which are discriminative models over generative models like MRF and BN? What are the relationships between CRFs and other fundamental statistics models e.g. logistic regression and log-linear model? and most importantly…I’m a newbie..where should I get started?

Here are the list of materials:

  1. Log-linear Models and Conditional Random Fields by Charles Elkanhttp://videolectures.net/cikm08_elkan_llmacrf/ . I think this should be the first material you might want to learn from. The instructor did a really good job giving the overview of fundamental topics on statistics, e.g. maximum likelihood, logistic regression, log-linear model, then connect the idea to CRF at the end. However, in this lecture, there is not much connection between CRFs and other graphical models.
  2. Discriminative Random Fields (IJCV paper) by Sanjiv Kumar and Martial Hebert. For me, this is the best paper talking about CRFs for image classification/labeling. The paper discusses about MRF, BN in brief, then points out the main problems using those models, and shows how CRF can solve the existing problems.
  3. Models for Learning Spatial Interactions in Natural Images for Context-Based Classification (PhD thesis) by Sanjiv Kumar. If you like the paper [2] above and would like to see more detail of how to derive some learning formula, then you might want to see the PhD thesis of this paper which provides a lot mode details and images for better understanding.
  4. An Introduction to Conditional Random Fields for Relational Learning by Sutton, C., McCallum, A. (tutorial paper). This is a good and pretty long tutorial paper. What I like in this paper is that the paper motivates readers by some good examples especially in natural language processing which is a good application to show the power of CRFs. Another good thing is that this paper shows some connections between CRFs and some other graphical models.

At some point, you might feel that CRFs are closely related to MRFs. For those who are not familiar to MRFs, there are some good books and papers I would lkike to recommend:

  1. Markov random field modeling in image analysis by Stan Z. Li — This might be the best book on MRFs so far as it explains almost everything about MRFs in considerable details ranging from Gibbs random fields, MRFs, CRFs, DRFs, energy functions, smoothness constrains, learning algorithms, inference algorithms, etc. I really recommend this book if you have TIME to read it. However, this book seems to focus more on theoretical than real example aspect.
  2. Image processing: dealing with texture by Maria Petrou & Pedro García Sevilla — I like this book because there are a lot of good examples on how MRFs, energy functions, etc look like in practice. This would be a good book to read parallel to the book from Stan Z. Li.
  3. Image analysis, random fields, and dynamic Monte Carlo methods: a mathematical introduction by Gerhard Winkler
  4. Markov Random Field Models: A Bayesian Approach to Computer Vision Problems (technical report) by Gerda Kamberova. — This is a free, good , and concise report on MRFs or computer vision.
内容概要:本文档详细介绍了基于Google Earth Engine (GEE) 构建的阿比让绿地分析仪表盘的设计与实现。首先,定义了研究区域的几何图形并将其可视化。接着,通过云掩膜函数和裁剪操作预处理Sentinel-2遥感影像,筛选出高质量的数据用于后续分析。然后,计算中值图像并提取NDVI(归一化差异植被指数),进而识别绿地及其面积。此外,还实现了多个高级分析功能,如多年变化趋势分析、人口-绿地交叉分析、城市热岛效应分析、生物多样性评估、交通可达性分析、城市扩张分析以及自动生成优化建议等。最后,提供了数据导出、移动端适配和报告生成功能,确保系统的实用性和便捷性。 适合人群:具备一定地理信息系统(GIS)和遥感基础知识的专业人士,如城市规划师、环境科学家、生态学家等。 使用场景及目标:①评估城市绿地分布及其变化趋势;②分析绿地与人口的关系,为城市规划提供依据;③研究城市热岛效应及生物多样性,支持环境保护决策;④评估交通可达性,优化城市交通网络;⑤监测城市扩张情况,辅助土地利用管理。 其他说明:该系统不仅提供了丰富的可视化工具,还集成了多种空间分析方法,能够帮助用户深入理解城市绿地的空间特征及其对环境和社会的影响。同时,系统支持移动端适配,方便随时随地进行分析。用户可以根据实际需求选择不同的分析模块,生成定制化的报告,为城市管理提供科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值