//2.古典问题: 有一对兔子, 从出生后第三个月起每个月都生一对兔子, 小兔子长到第三个月后每个月又生一对兔子, 假如兔子都不死, 每个月的兔子总数为多少? //根据题找到规律 1对, 1对, 2对, 3, 5, 8, 13, 21......可以发现从第三个月起 后一个月是前两个月兔子总数的和. int m[23]; int i; m[0]=m[1]=1; for (i=0; i<24; i++) { if (i==0 || i==1) { printf("第%d个月月兔子数量为:1对\n",i+1); } else { m[i]=m[i-1]+m[i-2]; printf("第%d个月月兔子数量为:%d对\n",i+1,m[i]); } }
本文探讨了一个经典的数学问题:兔子繁殖模型。通过解析兔子繁殖规律,我们发现了斐波那契数列的美妙应用。文章通过编程方式展示了兔子繁殖数量随时间增长的模式,揭示了斐波那契数列在自然界中的体现。
2809

被折叠的 条评论
为什么被折叠?



