#encoding:utf-8
from numpy import *
def loadDataSet():
dataMat=[];labalMat=[]
fr=open('testSet.txt')
for line in fr.readlines():
lineArr=line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labalMat.append(int(lineArr[2]))
return dataMat,labalMat
def sigmoid(inX):
return 1.0/(1.0+exp(-inX))
#梯度上升算法
def gradAscent(dataMatIn,classLabels):
dataMatix=mat(dataMatIn)
labalMat=mat(classLabels).transpose()
m,n=shape(dataMatix)
alpha=0.001
maxCycle=500
weights=ones((n,1))
for k in range(maxCycle):
h=sigmoid(dataMatix*weights)
error=(labalMat-h)
weights=weights+alpha*dataMatix.transpose()*error
return weights
#随机梯度上升算法
def stocGradAscent0(dataMatix,classLabels):
m,n=shape(dataMatix)
alpha=0.01
weights=ones(n)
for i in range(m):
h=sigmoid(sum(dataMatix[i]*weights))
error=classLabels[i]-h
weights=weights+alpha*error*dataMatix[i]
return weights
#dataArr,labelMat=loadDataSet()
#改进的随机梯度上升算法
def stocGradAscent1(dataMatix,classLabels,numIter=150):
m,n=shape(dataMatix)
weights=ones(n)
for j in range(numIter):
dataIndex=range(m)
for i in range(m):
alpha=4/(1.0+j+i)+0.01
randIndex=int(random.uniform(0,len(dataIndex)))
h=sigmoid(sum(dataMatix[randIndex]*weights))
error=classLabels[randIndex]-h
weights=weights+alpha*error*dataMatix[randIndex]
del(dataIndex[randIndex])
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr=array(dataMat)
n=shape(dataArr)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x=arange(-3.0,3.0,0.1)
y=(-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1');plt.ylabel('X2')
plt.show()
# dataArr,labelMat=loadDataSet()
# #weights=gradAscent(dataArr,labelMat)
# weights=stocGradAscent1(array(dataArr),labelMat,500)
# print weights
# plotBestFit(weights)
def classifyVector(intX,weights):
prob=sigmoid(sum(intX*weights))
if prob>0.5:
return 1.0
else:
return 0.0
def colicTest():
frTrain=open('horseColicTraining.txt')
frTest=open('horseColicTest.txt')
trainingSet=[];trainingLabels=[]
for line in frTrain.readlines():
currLine=line.strip().split('\t')
lineArr=[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights=stocGradAscent1(array(trainingSet),trainingLabels,500)
errorCount=0;numTestVec=0.0
for line in frTest.readlines():
numTestVec+=1.0;
currLine=line.strip().split('\t')
lineArr=[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr),trainWeights))!=int(currLine[21]):
errorCount+=1
errorRate=(float(errorCount)/numTestVec)
print "the error rate of this test is:%f"%errorRate
return errorRate
def multiTest():
numTests=10;errorSum=0.0
for k in range(numTests):
errorSum+=colicTest()
print "after %d iteration the average error rate is %f"%(numTests,errorSum/float(numTests))
multiTest()
logistic回归(机器学习)
最新推荐文章于 2022-12-07 17:08:15 发布