spark编程模型(八)之RDD基础转换操作(Transformation Operation)——union、intersection、subtract...

union()
  • def union(other: RDD[T]): RDD[T]

  • 将两个RDD进行合并,不去重

      scala> var rdd1 = sc.makeRDD(1 to 2,1)
      rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[45] at makeRDD at :21
    
      scala> rdd1.collect
      res42: Array[Int] = Array(1, 2)
    
      scala> var rdd2 = sc.makeRDD(2 to 3,1)
      rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[46] at makeRDD at :21
    
      scala> rdd2.collect
      res43: Array[Int] = Array(2, 3)
    
      scala> rdd1.union(rdd2).collect
      res44: Array[Int] = Array(1, 2, 2, 3)
intersection()
  • def intersection(other: RDD[T]): RDD[T]

  • def intersection(other: RDD[T], numPartitions: Int): RDD[T]

  • def intersection(other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

  • 返回两个RDD的交集,并且去重

  • 参数numPartitions指定返回的RDD的分区数

  • 参数partitioner用于指定分区函数

      scala> var rdd1 = sc.makeRDD(1 to 2,1)
      rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[45] at makeRDD at :21
    
      scala> rdd1.collect
      res42: Array[Int] = Array(1, 2)
    
      scala> var rdd2 = sc.makeRDD(2 to 3,1)
      rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[46] at makeRDD at :21
    
      scala> rdd2.collect
      res43: Array[Int] = Array(2, 3)
    
      scala> rdd1.intersection(rdd2).collect
      res45: Array[Int] = Array(2)
    
      scala> var rdd3 = rdd1.intersection(rdd2)
      rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[59] at intersection at :25
    
      scala> rdd3.partitions.size
      res46: Int = 1
    
      scala> var rdd3 = rdd1.intersection(rdd2,2)
      rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[65] at intersection at :25
    
      scala> rdd3.partitions.size
      res47: Int = 2
subtract()
  • def subtract(other: RDD[T]): RDD[T]

  • def subtract(other: RDD[T], numPartitions: Int): RDD[T]

  • def subtract(other: RDD[T], partitioner: Partitioner)(implicit ord: Ordering[T] = null): RDD[T]

  • 返回在RDD中出现,并且不在otherRDD中出现的元素,不去重

  • 参数numPartitions指定返回的RDD的分区数

  • 参数partitioner用于指定分区函数

      scala> var rdd1 = sc.makeRDD(Seq(1,2,2,3))
      rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[66] at makeRDD at :21
    
      scala> rdd1.collect
      res48: Array[Int] = Array(1, 2, 2, 3)
    
      scala> var rdd2 = sc.makeRDD(3 to 4)
      rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[67] at makeRDD at :21
    
      scala> rdd2.collect
      res49: Array[Int] = Array(3, 4)
    
      scala> rdd1.subtract(rdd2).collect
      res50: Array[Int] = Array(1, 2, 2)

转载于:https://www.cnblogs.com/oldsix666/articles/9458199.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值