第P6周-Pytorch实现好莱坞明星识别(VGG16)

目标

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch

(二)具体步骤
1. Utils.py
import torch  
import pathlib  
import matplotlib.pyplot as plt  
from torchvision.transforms import transforms  
  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device  
  
temp_dict = dict()  
def recursive_iterate(path):  
    """  
    根据所提供的路径遍历该路径下的所有子目录,列出所有子目录下的文件  
    :param path: 路径  
    :return: 返回最后一级目录的数据  
    """    path = pathlib.Path(path)  
    for file in path.iterdir():  
        if file.is_file():  
            temp_key = str(file).split('\\')[-2]  
            if temp_key in temp_dict:  
                temp_dict.update({temp_key: temp_dict[temp_key] + 1})  
            else:  
                temp_dict.update({temp_key: 1})  
            # print(file)  
        elif file.is_dir():  
            recursive_iterate(file)  
  
    return temp_dict  
  
  
def data_from_directory(directory, train_dir=None, test_dir=None, show=False):  
    """  
    提供是的数据集是文件形式的,提供目录方式导入数据,简单分析数据并返回数据分类  
    :param test_dir: 是否设置了测试集目录  
    :param train_dir: 是否设置了训练集目录  
    :param directory: 数据集所在目录  
    :param show: 是否需要以柱状图形式显示数据分类情况,默认显示  
    :return: 数据分类列表,类型: list  
    """    global total_image  
    print("数据目录:{}".format(directory))  
    data_dir = pathlib.Path(directory)  
  
    # for d in data_dir.glob('**/*'): # **/*通配符可以遍历所有子目录  
    #     if d.is_dir():  
    #         print(d)    class_name = []  
    total_image = 0  
    temp_sum = 0  
  
    if train_dir is None or test_dir is None:  
        data_path = list(data_dir.glob('*'))  
        class_name = [str(path).split('\\')[-1] for path in data_path]  
        print("数据分类: {}, 类别数量:{}".format(class_name, len(list(data_dir.glob('*')))))  
        total_image = len(list(data_dir.glob('*/*')))  
        print("图片数据总数: {}".format(total_image))  
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值